Research Article
BibTex RIS Cite

Morphometric Characteristics of River Basins Between Göksu River and Tarsus Stream (Mersin)

Year 2025, Volume: 49 Issue: 2, 55 - 76, 11.12.2025
https://doi.org/10.24232/jmd.1681674

Abstract

This study contributes to developing basin-based management strategies in the study area by conducting morphometric analyses of 17 river basins in Mersin province, located in the Eastern Mediterranean region, using Geographic Information Systems (GIS). For this purpose, morphometric parameters were divided into “basic parameters” and “characteristic parameters” derived from these parameters. Characteristic parameters used for the hydrological, geomorphological, and geological interpretation of the basins are: drainage density, stream frequency, drainage texture, bifurcation ratio, form factor, elongation ratio, overland flow length, relief ratio and hypsometric integral. According to the results, drainage density, stream frequency and flood risk are low in basins with carbonate rocks in the west of the study area, while flood risk is higher in basins to the east. There is a negative relationship between the area of the river basins and the relief. In some basins, tectonic and structural factors affect the bifurcation ratios. The basins have thin and elongated shapes in the north-south direction. The hypsometric integral values of the basins in the west of the study area are higher than those in the east, and these basins are more sensitive to erosion. In addition to the flood/overflow disaster risk assessments made with data obtained from the analyses in this study, a database was also created to evaluate hydrological modelling and disaster risk management processes to be carried out in the study area in the future.

Project Number

2015-TP3-1008

References

  • Alan, İ., Şahin, S., Balcı, V., Elibol, H., Böke, N., Altun, İ., Esirtgen, T., Keskin, H., Kop, A., ve Bakırhan, B. (2011). Orta Torosların jeodinamik evrimi: Bozyazı-Aydıncık-Gülnar-Silifke (Mersin) yöresi (Rapor no: 11462). MTA (yayımlanmamış).
  • Alan, İ., Şahin, S., Böke, N., Saçlı, L., Keskin, H., Pehlivan, Ş., Altun, İ., Kop, A., Bakırhan, B., Hanilçi, N., Balcı, V. ve Çelik, Ö. F. (2007). Orta Torosların jeodinamik evrimi: Ereğli (Konya)-Ulukışla (Niğde)-Karsantı (Adana)-Namrun (İçel) yöresi (Rapor no: 11006). MTA (yayımlanmamış).
  • Altıparmak, S. ve Türkoğlu, N. (2018). Yakacık Çayı havzasının (Hatay) morfometrik analizi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 58(1), 353-374.
  • Appiagyei, B. D., Belhoucine-Guezouli, L., Bessah, E., Morsli, B., & Fernandes, P. A. M. (2022). A review on climate change impacts on forest ecosystem services in the Mediterranean basin. Journal of Landscape Ecology, 15(1), 1-26. https://doi.org/10.2478/jlecol-2022-0001
  • Arıkan, M., Erkal, T. ve Ertek, T. A. (2023). Kuzey Anadolu Fay zonu ve güneyindeki Kızılırmak Havzası’nın (Çorum) relief morfometrisi. Doğu Coğrafya Dergisi, 28(49), 8-27. https://doi.org/10.5152/EGJ.2023.220405
  • Avcı, V. (2017). Darköprü Deresi̇ havzasında (Bi̇ngöl) tektoni̇k etki̇ni̇n morfometri̇k anali̇zlerle beli̇rlenmesi̇. Journal of International Social Research, 10(48), 270-284. https://doi.org/10.17719/jisr.2017.1499
  • Avcı, V. ve Sunkar, M. (2015). Giresun’da sel ve taşkın oluşumuna neden olan Aksu Çayı ve Batlama Deresi havzalarının morfometrik analizleri. Journal of Geography, 30, 91-119. https://dergipark.org.tr/tr/pub/iucografya/issue/25075/264657#article_cite
  • Ayhan, A. ve Lengeranlı, Y. (1986). Yahyalı-Demirkazık (Aladağ Yöresi) arasının tektonostratigrafik özellikleri. Jeoloji Mühendisliği Dergisi, 27, 31-45. https://dergipark.org.tr/tr/pub/jmd/issue/90147/1632017#article_cite
  • Babaiban, E. (2020). Morfometrik parametreler yardımıyla olası havza taşkın potansiyelinin değerlendirilmesi: Doğu Akdeniz havzası örneği [Yayımlanmamış Yüksek Tezi]. Gazi Üniversitesi Fen Bilimleri Enstitüsü.
  • Babu, K. J., Sreekumar, S. & Aslam, A. (2014). Implication of drainage basin parameters of a tropical river basin of South India. Applied Water Science, 6(1), 67-75. https://doi.org/10.1007/s13201-014-0212-8
  • Baduna Koçyiğit, M., Akay, H. ve Babaiban, E. (2021). Temel bileşen analizi kullanılarak Doğu Akdeniz Havzası ani taşkın potansiyelinin morfometrik yaklaşımla değerlendirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(3), 1669-1686. https://doi.org/10.17341/gazimmfd.829390
  • Barton, G. (2015). Simulating environmental impacts based on the example of roşia montană. Journal of Environmental Geography, 8(3-4), 1-10. https://doi.org/10.1515/jengeo-2015-0007
  • Baye, M. (2020). Watershed delineation by Arc Hydro tools. International Journal of Science and Research, 9(5), 956-961. https://www.doi.org/10.21275/SR20516144818
  • Bhat, A. G., Paradkar, V., Aishwarya, M. S., Balley, P., & Rema, K. P. (2023). Geospatial analysis of Kurumanpuzha sub-watershed in the Chaliyar River basin: a remote sensing and GIS approach for geomorphological assessment. Journal of Experimental Agriculture International, 45(11), 9-21. https://doi.org/10.9734/jeai/2023/v45i112230
  • Bilici, Ö. E. & Everest, A. (2017). 29 Aralık 2016 Mersin Selinin Meteorolojik Analizi ve İklim Değişikliği Bağlantısı. Doğu Coğrafya Dergisi, 22(38), 227-250. https://doi.org/10.17295/ataunidcd.294027
  • Biswas, S., Sudhakar, S. & Desai, V. R. (1999). Prioritisation of subwatersheds based on morphometric analysis of drainage basin: A remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing, 27(3), 155-166. https://doi.org/10.1007/bf02991569
  • Bolongaro-Crevenna, A., Rodríguez, V., Sorani, V., Frame, D., & Ortíz, M. (2005). Geomorphometric analysis for characterizing landforms in morelos state, mexico. Geomorphology, 67(3-4), 407-422. https://doi.org/10.1016/j.geomorph.2004.11.007
  • Cheruku, S., Prabhakar, G. & Boddu, U. R. (2023). Morphological characteristics of Kanthatmakur Vagu watershed of Warangal district: Using Geographical Information System (GIS). World Journal of Advanced Research and Reviews, 17(1), 255-265. https://doi.org/10.30574/wjarr.2023.17.1.0027
  • Chorley, R. J., Schumm, S. A. & Sugden, D. E. (1984). Geomorphology (1st ed.). Methuen, London.
  • Cox, R. T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible quaternary tilt-block tectonics: an example from the Mississippi embayment. Geological Society of America Bulletin, 106(5), 571–581. https://doi.org/10.1130/0016-7606(1994)1062.3.co;2
  • Cürebal, İ. ve Ekinci, D. (2006). Kızılkeçili Deresi havzasında CBS tabanlı RUSLE (3D) yöntemiyle erozyon analizi. Türk Coğrafya Dergisi, 47, 115-130.
  • Cürebal, İ., Efe, R., Özdemir, H., Soykan, A. & Sönmez, S. (2015). GIS-based approach for flood analysis: case study of Keçidere flash flood event (Turkey). Geocarto International, 31(4), 355-366. https://doi.org/10.1080/10106049.2015.1047411
  • Debbage, N. & Shepherd, J. M. (2018). The influence of urban development patterns on streamflow characteristics in the Charlanta Megaregion. Water Resources Research, 54(5), 3728-3747. https://doi.org/10.1029/2017WR021594
  • Demirtaşlı, E. (1967). Pınarbaşı-Sarız-Mağara ilçeleri arasındaki sahanın litostratigrafi birimleri ve petrol imkanları. (Rapor no: 3489). MTA (yayımlanmamış).
  • Dikici, M. (2024). Rapid identification of flood-prone settlements in the Eastern Mediterranean basin in Turkey. Environmental Earth Sciences, 83, 1-12. https://doi.org/10.1007/s12665-024-11614-1
  • Dimple, D., Rajput, J., Al-Ansari, N., Elbeltagi, A., Zerouali, B. & Santos, C. A. G. (2022). Determining the hydrological behavior of catchment based on quantitative morphometric analysis in the hard rock area of Nand Samand catchment, Rajasthan, India. Hydrology, 9(2), 31. https://doi.org/10.3390/hydrology9020031
  • Dwivedi, L., Pandey, R. & Tripathi, S. (2022). Remote sensing and GIS based morphometric characterization of Bichiya River watershed of Rewa district, MP. International Journal of Applied Research, 8(6), 101-107. https://doi.org/10.22271/allresearch.2022.v8.i6b.9829
  • Ede, P. N. (2015). Morphometric features of a low-elevation urban catchment and the implications for flooding. Global Journal of Geological Sciences, 13(1), 9-14. https://doi.org/10.4314/gjgs.v13i1.2
  • Eimers, M. C. & McDonald, E. C. (2015). Hydrologic changes resulting from urban cover in seasonally snow-covered catchments. Hydrological Processes, 29(6), 1280-1288. https://doi.org/10.1002/hyp.10250
  • Ensley, R., Hansen, R., Morales-Aguilar, C., & Thompson, J. (2021). Geomorphology of the mirador-calakmul karst basin: a gis-based approach to hydrogeologic mapping. Plos One, 16(8), e0255496. https://doi.org/10.1371/journal.pone.0255496
  • Eren, M., Kadir, S., Hatipoğlu, Z. & Gül, M. (2008). Quaternary Calcrete development in the Mersin area, Southern Turkey. Turkish Journal of Earth Sciences, 17(4), 763-784. https://journals.tubitak.gov.tr/earth/vol17/iss4/7
  • Erol, A. & Karadeniz, C. (2018). Morfometrik parametrelerin havza hidrolojisi bakımından değerlendirilmesi. Türkiye Ormancılık Dergisi, 447-454. https://doi.org/10.18182/tjf.476776
  • Esen, F. (2022). Ayancık Çayı Havzası’nda (Sinop) meydana gelen taşkın olaylarının havza morfometrisi açısından değerlendirilmesi. International Journal of Geography and Geography Education, 47, 233-257. https://doi.org/10.32003/igge.1126933
  • ESRI. (2009). ArcGIS version 9.3. Redlands, California
  • Evans, I. S. (1972). General geomorphometry, derivatives of altitude, and descriptive statistics. In R. J Chorley (Ed.), Spatial Analysis in Geomorphology, (pp. 17-90). Harper and Row.
  • Fraga, H., Moriondo, M., Leolini, L., & Santos, J. A. (2020). Mediterranean olive orchards under climate change: a review of future impacts and adaptation strategies. Agronomy, 11(1), 56. https://doi.org/10.3390/agronomy11010056
  • Gedik, A., Birgili, Ş., Yılmaz, H. ve Yoldaş, R. (1979). Mut-Ermenek-Silifke yöresinin jeolojisi ve petrol olanakları. Türkiye Jeoloji Kurumu Bülteni, 22, 8-26.
  • Gericke, O. J. (2019). GIS applications to investigate the linkage between geomorphological catchment characteristics and response time: a case study in four climatological regions, South Africa. Water, 11(5), 1072. https://doi.org/10.3390/w11051072
  • Gomi, T., Sidle, R. C., Miyata, S., Kosugi, K. & Onda, Y. (2008). Dynamic runoff connectivity of overland flow on steep forested hillslopes: scale effects and runoff transfer. Water Resources Research, 44(8), 1-16. https://doi.org/10.1029/2007wr005894
  • Hajam, R. A., Hamid, A. & Bhat, S. U. (2013). Application of morphometric analysis for geo-hydrological studies using geo-spatial technology-a case study of Vishav drainage basin. Journal of Waste Water Treatment and Analysis, 4(3), 1-13. https://doi.org/10.4172/2157-7587.1000157
  • Harsha, J., Ravikumar, A. S. & Shivakumar, B. L. (2020). Evaluation of morphometric parameters and hypsometric curve of Arkavathy river basin using RS and GIS techniques. Applied Water Science, 10(3), 1-15. https://doi.org/10.1007/s13201-020-1164-9
  • Horton, R. E. (1932). Drainage basin characteristics. American Geophysical Union of Transactions, 13(1), 350-361. https://doi.org/10.1029/TR013i001p00350
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:edosat]2.0.co;2
  • Hurtrez, J. E, Sol, C. & Lucazeau, F. (1999). Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills (Central Nepal). Earth Surface Processes and Landforms, 24(9), 799-808. https://doi.org/10.1002/(SICI)1096-9837(199908)24:9<799::AID-ESP12>3.0.CO;2-4
  • Hutchinson, M. F. & Dowling, T. I. (1991). A continental hydrological assessment of a new grid-based digital elevation model of Australia, Hydrological Processes, 5 (1), 45–58. In: Beven, K. J., Moore, I. D. (Eds.), 1995, Terrain analysis and distributed modelling in hydrology (Advances in Hydrological Processes), John Wiley & Sons, 49–62.
  • Hutchinson, M. F. (1996). A locally adaptive approach to the interpolation of digital elevation models. In Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, NM, January 21-26, 1996. Santa Barbara, CA: National Center for Geographic Information and Analysis.
  • Hutchinson, M. F. (1997). ANUDEM Version 4.6, User Guide, (Revision: 26 August 1997), The Australian National University, Centre for Resource and Environmental Studies, Canberra.
  • İçel, G. (2014). Mersin’de Meteorolojik ve Hidrometeorolojik Afetler. Journal of Turkish Studies, 9(11), 263-282. http://dx.doi.org/10.7827/TurkishStudies.7454
  • Iqbal, M., Sajjad, H. & Bhat, F. A. (2013). Morphometric analysis of Shaliganga Sub Catchment, Kashmir Valley, India using Geographical Information System. International Journal of Engineering Trends and Technology, 4 (1), 10-21. https://ijettjournal.org/archive/ijett-v4i1p202
  • İlker, S. (1975). Adana Baseni Kuzey-Batısının Jeolojisi ve Petrol Olanakları (Rapor No: 973). TPAO (yayımlanmamış).
  • İrcan, M. R., Kale, M. M. ve Duman, N. (2024). Morfometrik analizlerle taşkın duyarlılık değerlendirmesi: Şanlıurfa örneği. Geomatik, 9(3), 361-374. https://doi.org/10.29128/geomatik.1506840
  • Jayswal, P. S., Gontia, N. K. & Sondarva, K. N. (2021). Morphometric study of Dhatarwadi River basin using RS and GIS techniques. Current Journal of Applied Science and Technology, 40(11), 1-11. https://doi.org/10.9734/cjast/2021/v40i1031354
  • Juteau, T. (1980). Ophiolites of Turkey. Ofiyoliti, 2, 199-233.
  • Kanth, T. A. & ul Hassan, Z. (2012) Morphometric analysis and prioritization of watersheds for soil and water resource management in Wular catchment using Geo-Spatial tools. International Journal of Geology, Earth and Environmental Sciences, 2(1), 30-41.
  • Karataş, A. (2017). Karasu Çayı Havzasının Hidrografik Planlaması. Çantay.
  • Kaynak, A. (2001). Mersin’de Sel Afeti Raporu. TMH (Türkiye Mühendislik Haberleri), 415. https://www.imo.org.tr/Eklenti/1718,mersinde-sel-afeti-raporupdf.pdf?
  • Khalifa, A., Bashir, B., Alsalman, A., Naik, S. P. & Nappi, R. (2023). Remotely sensed data, morpho-metric analysis, and ıntegrated method approach for flood risk assessment: Case study of Wadi Al-Arish landscape, Sinai, Egypt. Water, 15(9), 1797. https://doi.org/10.3390/w15091797
  • Krishnamurthy, J., Srinivas, G., Jayaram, V. & Chandrasekhar M. G. (1996). Influence of rock type and structure in the development of drainage networks in typical hard rock terrain. International Journal of Applied Earth Observation and Geoinformation, 4(3), 252-259.
  • Kumar, S., Singh, V. & Saroha, J. (2023). Application of geospatial techniques in soil erosion assessment in Sarbari Khad of Himachal pradesh, India. Journal of Advanced Zoology, 44(3), 25-33. https://doi.org/10.17762/jaz.v44i3.215
  • Kuşcu, İ. & Özdemir, H. (2025). Flood susceptibility analysis of settlement basins on a provincial scale using inventory flood data. Environmental Earth Sciences, 84(15), 1-17. https://doi.org/10.1007/s12665-024-11988-2
  • Lin, L., Wu, Z., & Liang, Q. (2019). Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework. Natural Hazards, 97(2), 455-475. https://doi.org/10.1007/s11069-019-03615-2
  • Makhamreh, Z., Al-Hawary, M. & Odeh, S. (2020). Assessment of morphometric characteristics of Wadi Al-Shumar Catchment in Jordan. Open Journal of Geology, 10, 155-170. https://doi.org/10.4236/ojg.2020.102009
  • Mazahir, S., Javed, A. & Khanday, M. (2022). Drainage basin characteristics of Dhund River basin, Eastern Rajasthan India, using remote sensing and GIS techniques. Journal of Geographic Information System, 14(4), 347-363. https://doi.org/10.4236/jgis.2022.144019.
  • Merritts, D. J. & Vincent, K. R. (1989). Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Mendocino triple junction region, Northern California. Geological Society of America Bulletin, 101(11), 1373-1388. https://doi.org/10.1130/0016-7606(1989)1012.3.co;2
  • MGM (2025, 03 Mart). Meteoroloji Genel Müdürlüğü. İllerimize Ait Genel İstatistik Verileri. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=ICEL
  • Moeini, A., Zarandi, N. K., Pazira, E. & Badiollahi, Y. (2015). The relationship between drainage density and soil erosion rate: a study of five watersheds in Ardebil province, Iran. WIT Transactions on Ecology and the Environment, 197, 129-138. https://doi.org/10.2495/rm150121
  • Morisawa, M. E. (1959). Relation of morphometric properties to runoff in the Little Mill Creek, Ohio, Drainage basin, (Rapor no: CU-TR-17). Columbia University (yayımlanmış).
  • MP (Mersin Portal) (2025, 06 Mayıs). Mersin 1968 – 2001 –2016 Değişmeyen Kaderi Sel. https://www.mersinportal.com/mersin/mersin-1968-2001-2016-degismeyen-kaderi-sel-h34102.html
  • Mueller, J. E. (1968). An Introduction to the hydraulic and topographic sinuosity indexes. Annals of the Association of American Geographers, 58(2), 371-385. https://www.jstor.org/stable/2561621
  • Mzobe, P., Yan, Y., Berggren, M., Pilesjö, P., Olefeldt, D., Lundin, E., Roulet, N. T. & Persson, A. (2020). Morphometric control on dissolved organic carbon in Subarctic streams. Journal of Geophysical Research: Biogeosciences, 125(9), 1-16. https://doi.org/10.1029/2019JG005348
  • Nieuwenhuizen, N. V., Lindsay, J. B. & DeVries, B. (2021). Smoothing of digital elevation models and the alteration of overland flow path length distributions. Hydrological Processes, 35(7), 1-12. https://doi.org/10.1002/hyp.14271
  • Ocak, F. & Bahadır, M. (2024). Evaluation of potential soil erosion areas in the Ladik Lake basin via AHP and GIS integration (Samsun, Türkiye). Journal of Geography 49, 83-96. https://doi.org/10.26650/JGEOG2024-1452908
  • Oguchi, T. (1997). Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surface Processes and Landforms, 22(2), 107-120. https://doi.org/10.1002/(SICI)1096-9837(199702)22:2<107::AID-ESP680>3.0.CO;2-U
  • Ohmori, H. (1993). Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation. Geomorphology, 8(4), 263-277. https://doi.org/10.1016/0169-555X(93)90023-U
  • Oruonye, E. D. & Ahmed, Y. M. (2021). Evaluation of erosion-prone areas in Lamurde River basin, Nigeria using morphometric prioritization method. Journal of Geography, Environment and Earth Science International, 25(8) 17-31. https://doi.org/10.9734/jgeesi/2021/v25i830301
  • Ödeker, B. ve Türkoğlu, N. (2020). Sabuncular Deresi havzasının (Rize/Çayeli) morfometrik özelliklerinin Coğrafi Bilgi Sistemleri (CBS) ile belirlenmesi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 60(1), 14-38.
  • Özdemir, H. & Bird, D. K. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and dem in point of floods. Environmental Geology, 56(7), 1405-1415. https://doi.org/10.1007/s00254-008-1235-y
  • Özdemir, H. (2011). Havza Morfometrisi ve Taşkınlar In D. Ekinci (Ed.), Fiziki Coğrafya Araştırmaları: Sistematik ve Bölgesel, (ss. 507-526). Babil.
  • Paliaga, G., Faccini, F., Luino, F., & Turconi, L. (2019). A spatial multicriteria prioritizing approach for geo-hydrological risk mitigation planning in small and densely urbanized Mediterranean basins. Natural Hazards and Earth System Sciences, 19(1), 53-69. https://doi.org/10.5194/nhess-19-53-2019
  • Pande, C. B. & Moharir, K. N. (2017). GIS based quantitative morphometric analysis and its consequences: a case study from Shanur River basin, Maharashtra India. Applied Water Science, 7(2), 861-871. https://doi.org/10.1007/s13201-015-0298-7
  • Parveen, R., Kumar, U. & Singh, V. K. (2012). Geomorphometric characterization of upper South Koel basin, Jharkhand: A Remote Sensing & GIS Approach. Journal of Water Resource and Protection, 4(12), 1042-1050. https://doi.org/10.4236/jwarp.2012.412120
  • Poisson, A. (1977). Recherces geologiques dans les Taurides occidentales (Turquie) [Ph.D. Thesis], Université Paris-Sud Orsay.
  • Reddy, G. P. O., Maji, A. K. & Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India – a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1), 1-16. https://doi.org/10.1016/j.jag.2004.06.003
  • Romshoo, S. A., Bhat, S. A., & Rashid, I. (2012). Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the upper Indus basin. Journal of Earth System Science, 121(3), 659-686. https://doi.org/10.1007/s12040-012-0192-8
  • Samal, D. R., Gedam, S. S. & Nagarajan, R. (2015). GIS based drainage morphometry and its influence on hydrology inparts of western Ghats region, Maharashtra, India. Geocarto International, 30(7), 755-778. https://doi.org/10.1080/10106049.2014.978903
  • Segnalini, M., Nardone, A., Bernabucci, U., Vitali, A., Ronchi, B., & Lacetera, N. (2010). Dynamics of the temperature-humidity index in the Mediterranean basin. International Journal of Biometeorology, 55(2), 253-263. https://doi.org/10.1007/s00484-010-0331-3
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. Geological Society of American Bulletin, 67(5), 597-646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
  • Shekar, P. R. & Mathew, A. (2024). Morphometric analysis of watersheds: A comprehensive review of data sources, quality, and geospatial techniques. Watershed Ecology and the Environment, 6, 13-25. https://doi.org/10.1016/j.wsee.2023.12.001
  • Sherzad, S. & Tharavathy, N. C. (2022). Morphometric analysis of Baghlan province for Amu river basin in Afghanistan using remote sensing and GIS. Ecology, Environment and Conservation, 28(2), 964-974. https://doi.org/10.53550/eec.2022.v28i02.059
  • Shreve, R. L. (1969). Stream lengths and basin areas in topologically random channel networks. The Journal of Geology, 77(4), 397-414. https://doi.org/10.1086/628366
  • Singh, M. C., Satpute, S. & Prasad, V. (2023). Remote sensing and GIS-based watershed prioritization for land and water conservation planning and management. Water Science & Technology, 88(1), 233–265. https://doi.org/10.2166/wst.2023.207
  • Singh, O., Sarangi, A. & Sharma, M. C. (2008). Hypsometric integral estimation methods and its relevance on erosion status of north-western lesser Himalayan watersheds. Water Resources Management, 22(11), 1545-1560. https://doi.org/10.1007/s11269-008-9242-z
  • Singh, R., Sahu, P., Kumari, S. & Chauhan, V. (2025). Assessing tectonic influence on landscape evolution: case study of the Nandakini watershed, Western Himalaya. Journal of Mountain Science, 22(2), 666-680. https://doi.org/10.1007/s11629-024-9065-2
  • Singh, W. R., Barman, S. & Tirkey, G. (2021). Morphometric analysis and watershed prioritization in relation to soil erosion in Dudhnai watershed. Applied Water Science, 11(9), 151. https://doi.org/10.1007/s13201-021-01483-5
  • Smith, K. G. (1950). Standards for grading textures of erosional topography. American Journal of Science, 248, 655-668. http://dx.doi.org/10.2475/ajs.248.9.655
  • Soni, S. (2016). Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh, India using geospatial technique. Applied Water Science, 7(5), 2089-2102. https://doi.org/10.1007/s13201-016-0395-2
  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117-1142. https://doi.org/10.1130/0016-7606(1952)63[1117:haaoet]2.0.co;2
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920. https://doi.org/10.1029/TR038i006p00913
  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. T. Chow (Ed.), Handbook of Applied Hydrology, (pp. 439-476). McGraw Hill Book Company.
  • Sukristiyanti, S., Maria, R. & Lestiana, H. (2018). Watershed-based morphometric analysis: a review. IOP Conference Series: Earth and Environmental Science, 118, 1-5. https://doi.org/10.1088/1755-1315/118/1/012028
  • Şenol, M., Şahin, Ş. ve Duman, T. Y. (1998). Adana-Mersin dolayının jeoloji etüt raporu (Rapor no: 10098). MTA (yayımlanmamış).
  • Tekin, S. (2019). Göksu Nehri havzasının coğrafi bilgi sistemleri tabanlı jeomorfometrik analizi ve niceliksel heyelan olası tehlike değerlendirmesi [Yayımlanmamış Doktora Tezi]. Çukurova Üniversitesi Fen Bilimleri Enstitüsü.
  • Thomas, J., Joseph, S. & Thrivikramaji, K. P. (2010). Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. International Journal of Digital Earth, 3(2), 135-156. https://doi.org/10.1080/17538940903464370
  • Thomas, J., Joseph, S., Thrivikramji, K. P. & Abe, G. (2011). Morphometric analysis of the drainage system and its hydrological implications in the Rain Shadow Regions, Kerala, India. Journal of Geographical Sciences, 21, 1077-1088. https://doi.org/10.1007/s11442-011-0901
  • Topuz, M. ve Karabulut, M. (2016). Limonlu ve Alata havzalarının (Mersin-Erdemli) jeomorfometrik analizi. Journal of Turkish Studies, 11(2), 1231-1231. https://doi.org/10.7827/turkishstudies.9165
  • Utlu, M. ve Özdemir, H. (2018). Havza morfometrik özelliklerinin taşkın üretmedeki rolü Biga Çayı havzası örneği. Journal of Geography, 36, 49-62. https://dergipark.org.tr/tr/pub/iucografya/issue/37715/408101#article_cite
  • Verstappen, H. (1983). Applied Geomorphology: Geomorphological Surveys for Environmental Development. Elsevier, New York.
  • Yıldırım, Ü. (2021a). Trabzon (KD Türkiye) akarsu vavzalarının Coğrafi Bilgi Sistemi kullanılarak morfometrik analiz yoluyla hidrolojik değerlendirmesi. Bartın Orman Fakültesi Dergisi, 23(1), 244-253. https://doi.org/10.24011/barofd.894180
  • Yıldırım, Ü. (2021b). Morphometric analysis to infer hydrological behaviour of Coruh River basin (Northern Turkey) using GIS technique. Fresenius Environmental Bulletin, 30(05), 4962-4974.
  • Zorer, H. ve Tonbul, S. (2019). Başkale havzasında havza gelişiminin jeomorfometrik analizlerle incelenmesi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 29(2), 19-38. https://doi.org/10.18069/firatsbed.536045

Göksu Nehri ve Tarsus Çayı (Mersin) Arasında Yer Alan Akarsu Havzalarının Morfometrik Özellikleri

Year 2025, Volume: 49 Issue: 2, 55 - 76, 11.12.2025
https://doi.org/10.24232/jmd.1681674

Abstract

Bu çalışmada, Doğu Akdeniz bölgesinde yer alan Mersin ilindeki 17 adet akarsu havzasının Coğrafi Bilgi Sistemi (CBS) ile morfometrik analizlerinin yapılarak çalışma alanında havza tabanlı yönetim stratejilerinin geliştirilmesine yönelik katkıların oluşturulması amaçlanmaktadır. Bu amaç doğrultusunda, morfometrik parametreler, “temel parametreler” ve bu parametrelerden türetilen “karakteristik parametreler” olmak üzere iki grupta incelenmiştir. Havzaların hidrolojik, jeomorfolojik ve jeolojik olarak yorumlanmasında kullanılan karakteristik parametreler; drenaj yoğunluğu, akarsu sıklığı, drenaj dokusu, çatallanma oranı, form faktör, uzama oranı, yüzeysel akış uzunluğu, rölyef oranı ve hipsometrik integraldir. Elde edilen sonuçlara göre; çalışma alanının batısında, karbonatlı kayaçların bulunduğu havzalarda drenaj yoğunluğu, akarsu sıklığı ve sel riski düşük olup doğudaki havzalarda ise sel riski daha yüksektir. Akarsu havzalarının alanı ile rölyef arasında negatif bir ilişki olduğu belirlenmiştir. Bazı havzalarda, tektonik ve yapısal faktörlerin çatallanma oranlarını etkilediği tespit edilmiştir. Havzalar, kuzey–güney doğrultusunda ince ve uzamış şekillere sahiptir. Çalışma alanının batısındaki havzaların hipsometrik integral değerleri, doğuda yer alan havzalara göre daha yüksek olup bu havzalar aşınma açısından daha hassastırlar. Bu çalışma ile analizler sonucunda elde edilen veriler ile yapılan sel/taşkın afet riski değerlendirmelerinin dışında, çalışma alanında ilerleyen süreçte yapılacak hidrolojik modelleme ve afet risk yönetimi süreçlerinin değerlendirilmesine yönelik çalışmalar için de veri tabanı oluşturulmuştur.

Supporting Institution

Mersin Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2015-TP3-1008

Thanks

Bu çalışma, birinci yazara (Ümit Yıldırım) ait “Göksu Nehri ve Tarsus Çayı (Mersin) Arasında Yer Alan Akarsuların Morfometrik, Hidrolojik ve Hidrokimyasal Özelliklerinin Araştırılması” başlıklı doktora tezinden üretilmiş olup Mersin Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir (Proje Numarası: 2015-TP3-1008). Yazarlar bu desteğinden dolayı Mersin Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne teşekkürlerini sunar.

References

  • Alan, İ., Şahin, S., Balcı, V., Elibol, H., Böke, N., Altun, İ., Esirtgen, T., Keskin, H., Kop, A., ve Bakırhan, B. (2011). Orta Torosların jeodinamik evrimi: Bozyazı-Aydıncık-Gülnar-Silifke (Mersin) yöresi (Rapor no: 11462). MTA (yayımlanmamış).
  • Alan, İ., Şahin, S., Böke, N., Saçlı, L., Keskin, H., Pehlivan, Ş., Altun, İ., Kop, A., Bakırhan, B., Hanilçi, N., Balcı, V. ve Çelik, Ö. F. (2007). Orta Torosların jeodinamik evrimi: Ereğli (Konya)-Ulukışla (Niğde)-Karsantı (Adana)-Namrun (İçel) yöresi (Rapor no: 11006). MTA (yayımlanmamış).
  • Altıparmak, S. ve Türkoğlu, N. (2018). Yakacık Çayı havzasının (Hatay) morfometrik analizi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 58(1), 353-374.
  • Appiagyei, B. D., Belhoucine-Guezouli, L., Bessah, E., Morsli, B., & Fernandes, P. A. M. (2022). A review on climate change impacts on forest ecosystem services in the Mediterranean basin. Journal of Landscape Ecology, 15(1), 1-26. https://doi.org/10.2478/jlecol-2022-0001
  • Arıkan, M., Erkal, T. ve Ertek, T. A. (2023). Kuzey Anadolu Fay zonu ve güneyindeki Kızılırmak Havzası’nın (Çorum) relief morfometrisi. Doğu Coğrafya Dergisi, 28(49), 8-27. https://doi.org/10.5152/EGJ.2023.220405
  • Avcı, V. (2017). Darköprü Deresi̇ havzasında (Bi̇ngöl) tektoni̇k etki̇ni̇n morfometri̇k anali̇zlerle beli̇rlenmesi̇. Journal of International Social Research, 10(48), 270-284. https://doi.org/10.17719/jisr.2017.1499
  • Avcı, V. ve Sunkar, M. (2015). Giresun’da sel ve taşkın oluşumuna neden olan Aksu Çayı ve Batlama Deresi havzalarının morfometrik analizleri. Journal of Geography, 30, 91-119. https://dergipark.org.tr/tr/pub/iucografya/issue/25075/264657#article_cite
  • Ayhan, A. ve Lengeranlı, Y. (1986). Yahyalı-Demirkazık (Aladağ Yöresi) arasının tektonostratigrafik özellikleri. Jeoloji Mühendisliği Dergisi, 27, 31-45. https://dergipark.org.tr/tr/pub/jmd/issue/90147/1632017#article_cite
  • Babaiban, E. (2020). Morfometrik parametreler yardımıyla olası havza taşkın potansiyelinin değerlendirilmesi: Doğu Akdeniz havzası örneği [Yayımlanmamış Yüksek Tezi]. Gazi Üniversitesi Fen Bilimleri Enstitüsü.
  • Babu, K. J., Sreekumar, S. & Aslam, A. (2014). Implication of drainage basin parameters of a tropical river basin of South India. Applied Water Science, 6(1), 67-75. https://doi.org/10.1007/s13201-014-0212-8
  • Baduna Koçyiğit, M., Akay, H. ve Babaiban, E. (2021). Temel bileşen analizi kullanılarak Doğu Akdeniz Havzası ani taşkın potansiyelinin morfometrik yaklaşımla değerlendirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(3), 1669-1686. https://doi.org/10.17341/gazimmfd.829390
  • Barton, G. (2015). Simulating environmental impacts based on the example of roşia montană. Journal of Environmental Geography, 8(3-4), 1-10. https://doi.org/10.1515/jengeo-2015-0007
  • Baye, M. (2020). Watershed delineation by Arc Hydro tools. International Journal of Science and Research, 9(5), 956-961. https://www.doi.org/10.21275/SR20516144818
  • Bhat, A. G., Paradkar, V., Aishwarya, M. S., Balley, P., & Rema, K. P. (2023). Geospatial analysis of Kurumanpuzha sub-watershed in the Chaliyar River basin: a remote sensing and GIS approach for geomorphological assessment. Journal of Experimental Agriculture International, 45(11), 9-21. https://doi.org/10.9734/jeai/2023/v45i112230
  • Bilici, Ö. E. & Everest, A. (2017). 29 Aralık 2016 Mersin Selinin Meteorolojik Analizi ve İklim Değişikliği Bağlantısı. Doğu Coğrafya Dergisi, 22(38), 227-250. https://doi.org/10.17295/ataunidcd.294027
  • Biswas, S., Sudhakar, S. & Desai, V. R. (1999). Prioritisation of subwatersheds based on morphometric analysis of drainage basin: A remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing, 27(3), 155-166. https://doi.org/10.1007/bf02991569
  • Bolongaro-Crevenna, A., Rodríguez, V., Sorani, V., Frame, D., & Ortíz, M. (2005). Geomorphometric analysis for characterizing landforms in morelos state, mexico. Geomorphology, 67(3-4), 407-422. https://doi.org/10.1016/j.geomorph.2004.11.007
  • Cheruku, S., Prabhakar, G. & Boddu, U. R. (2023). Morphological characteristics of Kanthatmakur Vagu watershed of Warangal district: Using Geographical Information System (GIS). World Journal of Advanced Research and Reviews, 17(1), 255-265. https://doi.org/10.30574/wjarr.2023.17.1.0027
  • Chorley, R. J., Schumm, S. A. & Sugden, D. E. (1984). Geomorphology (1st ed.). Methuen, London.
  • Cox, R. T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible quaternary tilt-block tectonics: an example from the Mississippi embayment. Geological Society of America Bulletin, 106(5), 571–581. https://doi.org/10.1130/0016-7606(1994)1062.3.co;2
  • Cürebal, İ. ve Ekinci, D. (2006). Kızılkeçili Deresi havzasında CBS tabanlı RUSLE (3D) yöntemiyle erozyon analizi. Türk Coğrafya Dergisi, 47, 115-130.
  • Cürebal, İ., Efe, R., Özdemir, H., Soykan, A. & Sönmez, S. (2015). GIS-based approach for flood analysis: case study of Keçidere flash flood event (Turkey). Geocarto International, 31(4), 355-366. https://doi.org/10.1080/10106049.2015.1047411
  • Debbage, N. & Shepherd, J. M. (2018). The influence of urban development patterns on streamflow characteristics in the Charlanta Megaregion. Water Resources Research, 54(5), 3728-3747. https://doi.org/10.1029/2017WR021594
  • Demirtaşlı, E. (1967). Pınarbaşı-Sarız-Mağara ilçeleri arasındaki sahanın litostratigrafi birimleri ve petrol imkanları. (Rapor no: 3489). MTA (yayımlanmamış).
  • Dikici, M. (2024). Rapid identification of flood-prone settlements in the Eastern Mediterranean basin in Turkey. Environmental Earth Sciences, 83, 1-12. https://doi.org/10.1007/s12665-024-11614-1
  • Dimple, D., Rajput, J., Al-Ansari, N., Elbeltagi, A., Zerouali, B. & Santos, C. A. G. (2022). Determining the hydrological behavior of catchment based on quantitative morphometric analysis in the hard rock area of Nand Samand catchment, Rajasthan, India. Hydrology, 9(2), 31. https://doi.org/10.3390/hydrology9020031
  • Dwivedi, L., Pandey, R. & Tripathi, S. (2022). Remote sensing and GIS based morphometric characterization of Bichiya River watershed of Rewa district, MP. International Journal of Applied Research, 8(6), 101-107. https://doi.org/10.22271/allresearch.2022.v8.i6b.9829
  • Ede, P. N. (2015). Morphometric features of a low-elevation urban catchment and the implications for flooding. Global Journal of Geological Sciences, 13(1), 9-14. https://doi.org/10.4314/gjgs.v13i1.2
  • Eimers, M. C. & McDonald, E. C. (2015). Hydrologic changes resulting from urban cover in seasonally snow-covered catchments. Hydrological Processes, 29(6), 1280-1288. https://doi.org/10.1002/hyp.10250
  • Ensley, R., Hansen, R., Morales-Aguilar, C., & Thompson, J. (2021). Geomorphology of the mirador-calakmul karst basin: a gis-based approach to hydrogeologic mapping. Plos One, 16(8), e0255496. https://doi.org/10.1371/journal.pone.0255496
  • Eren, M., Kadir, S., Hatipoğlu, Z. & Gül, M. (2008). Quaternary Calcrete development in the Mersin area, Southern Turkey. Turkish Journal of Earth Sciences, 17(4), 763-784. https://journals.tubitak.gov.tr/earth/vol17/iss4/7
  • Erol, A. & Karadeniz, C. (2018). Morfometrik parametrelerin havza hidrolojisi bakımından değerlendirilmesi. Türkiye Ormancılık Dergisi, 447-454. https://doi.org/10.18182/tjf.476776
  • Esen, F. (2022). Ayancık Çayı Havzası’nda (Sinop) meydana gelen taşkın olaylarının havza morfometrisi açısından değerlendirilmesi. International Journal of Geography and Geography Education, 47, 233-257. https://doi.org/10.32003/igge.1126933
  • ESRI. (2009). ArcGIS version 9.3. Redlands, California
  • Evans, I. S. (1972). General geomorphometry, derivatives of altitude, and descriptive statistics. In R. J Chorley (Ed.), Spatial Analysis in Geomorphology, (pp. 17-90). Harper and Row.
  • Fraga, H., Moriondo, M., Leolini, L., & Santos, J. A. (2020). Mediterranean olive orchards under climate change: a review of future impacts and adaptation strategies. Agronomy, 11(1), 56. https://doi.org/10.3390/agronomy11010056
  • Gedik, A., Birgili, Ş., Yılmaz, H. ve Yoldaş, R. (1979). Mut-Ermenek-Silifke yöresinin jeolojisi ve petrol olanakları. Türkiye Jeoloji Kurumu Bülteni, 22, 8-26.
  • Gericke, O. J. (2019). GIS applications to investigate the linkage between geomorphological catchment characteristics and response time: a case study in four climatological regions, South Africa. Water, 11(5), 1072. https://doi.org/10.3390/w11051072
  • Gomi, T., Sidle, R. C., Miyata, S., Kosugi, K. & Onda, Y. (2008). Dynamic runoff connectivity of overland flow on steep forested hillslopes: scale effects and runoff transfer. Water Resources Research, 44(8), 1-16. https://doi.org/10.1029/2007wr005894
  • Hajam, R. A., Hamid, A. & Bhat, S. U. (2013). Application of morphometric analysis for geo-hydrological studies using geo-spatial technology-a case study of Vishav drainage basin. Journal of Waste Water Treatment and Analysis, 4(3), 1-13. https://doi.org/10.4172/2157-7587.1000157
  • Harsha, J., Ravikumar, A. S. & Shivakumar, B. L. (2020). Evaluation of morphometric parameters and hypsometric curve of Arkavathy river basin using RS and GIS techniques. Applied Water Science, 10(3), 1-15. https://doi.org/10.1007/s13201-020-1164-9
  • Horton, R. E. (1932). Drainage basin characteristics. American Geophysical Union of Transactions, 13(1), 350-361. https://doi.org/10.1029/TR013i001p00350
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:edosat]2.0.co;2
  • Hurtrez, J. E, Sol, C. & Lucazeau, F. (1999). Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills (Central Nepal). Earth Surface Processes and Landforms, 24(9), 799-808. https://doi.org/10.1002/(SICI)1096-9837(199908)24:9<799::AID-ESP12>3.0.CO;2-4
  • Hutchinson, M. F. & Dowling, T. I. (1991). A continental hydrological assessment of a new grid-based digital elevation model of Australia, Hydrological Processes, 5 (1), 45–58. In: Beven, K. J., Moore, I. D. (Eds.), 1995, Terrain analysis and distributed modelling in hydrology (Advances in Hydrological Processes), John Wiley & Sons, 49–62.
  • Hutchinson, M. F. (1996). A locally adaptive approach to the interpolation of digital elevation models. In Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, NM, January 21-26, 1996. Santa Barbara, CA: National Center for Geographic Information and Analysis.
  • Hutchinson, M. F. (1997). ANUDEM Version 4.6, User Guide, (Revision: 26 August 1997), The Australian National University, Centre for Resource and Environmental Studies, Canberra.
  • İçel, G. (2014). Mersin’de Meteorolojik ve Hidrometeorolojik Afetler. Journal of Turkish Studies, 9(11), 263-282. http://dx.doi.org/10.7827/TurkishStudies.7454
  • Iqbal, M., Sajjad, H. & Bhat, F. A. (2013). Morphometric analysis of Shaliganga Sub Catchment, Kashmir Valley, India using Geographical Information System. International Journal of Engineering Trends and Technology, 4 (1), 10-21. https://ijettjournal.org/archive/ijett-v4i1p202
  • İlker, S. (1975). Adana Baseni Kuzey-Batısının Jeolojisi ve Petrol Olanakları (Rapor No: 973). TPAO (yayımlanmamış).
  • İrcan, M. R., Kale, M. M. ve Duman, N. (2024). Morfometrik analizlerle taşkın duyarlılık değerlendirmesi: Şanlıurfa örneği. Geomatik, 9(3), 361-374. https://doi.org/10.29128/geomatik.1506840
  • Jayswal, P. S., Gontia, N. K. & Sondarva, K. N. (2021). Morphometric study of Dhatarwadi River basin using RS and GIS techniques. Current Journal of Applied Science and Technology, 40(11), 1-11. https://doi.org/10.9734/cjast/2021/v40i1031354
  • Juteau, T. (1980). Ophiolites of Turkey. Ofiyoliti, 2, 199-233.
  • Kanth, T. A. & ul Hassan, Z. (2012) Morphometric analysis and prioritization of watersheds for soil and water resource management in Wular catchment using Geo-Spatial tools. International Journal of Geology, Earth and Environmental Sciences, 2(1), 30-41.
  • Karataş, A. (2017). Karasu Çayı Havzasının Hidrografik Planlaması. Çantay.
  • Kaynak, A. (2001). Mersin’de Sel Afeti Raporu. TMH (Türkiye Mühendislik Haberleri), 415. https://www.imo.org.tr/Eklenti/1718,mersinde-sel-afeti-raporupdf.pdf?
  • Khalifa, A., Bashir, B., Alsalman, A., Naik, S. P. & Nappi, R. (2023). Remotely sensed data, morpho-metric analysis, and ıntegrated method approach for flood risk assessment: Case study of Wadi Al-Arish landscape, Sinai, Egypt. Water, 15(9), 1797. https://doi.org/10.3390/w15091797
  • Krishnamurthy, J., Srinivas, G., Jayaram, V. & Chandrasekhar M. G. (1996). Influence of rock type and structure in the development of drainage networks in typical hard rock terrain. International Journal of Applied Earth Observation and Geoinformation, 4(3), 252-259.
  • Kumar, S., Singh, V. & Saroha, J. (2023). Application of geospatial techniques in soil erosion assessment in Sarbari Khad of Himachal pradesh, India. Journal of Advanced Zoology, 44(3), 25-33. https://doi.org/10.17762/jaz.v44i3.215
  • Kuşcu, İ. & Özdemir, H. (2025). Flood susceptibility analysis of settlement basins on a provincial scale using inventory flood data. Environmental Earth Sciences, 84(15), 1-17. https://doi.org/10.1007/s12665-024-11988-2
  • Lin, L., Wu, Z., & Liang, Q. (2019). Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework. Natural Hazards, 97(2), 455-475. https://doi.org/10.1007/s11069-019-03615-2
  • Makhamreh, Z., Al-Hawary, M. & Odeh, S. (2020). Assessment of morphometric characteristics of Wadi Al-Shumar Catchment in Jordan. Open Journal of Geology, 10, 155-170. https://doi.org/10.4236/ojg.2020.102009
  • Mazahir, S., Javed, A. & Khanday, M. (2022). Drainage basin characteristics of Dhund River basin, Eastern Rajasthan India, using remote sensing and GIS techniques. Journal of Geographic Information System, 14(4), 347-363. https://doi.org/10.4236/jgis.2022.144019.
  • Merritts, D. J. & Vincent, K. R. (1989). Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Mendocino triple junction region, Northern California. Geological Society of America Bulletin, 101(11), 1373-1388. https://doi.org/10.1130/0016-7606(1989)1012.3.co;2
  • MGM (2025, 03 Mart). Meteoroloji Genel Müdürlüğü. İllerimize Ait Genel İstatistik Verileri. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=ICEL
  • Moeini, A., Zarandi, N. K., Pazira, E. & Badiollahi, Y. (2015). The relationship between drainage density and soil erosion rate: a study of five watersheds in Ardebil province, Iran. WIT Transactions on Ecology and the Environment, 197, 129-138. https://doi.org/10.2495/rm150121
  • Morisawa, M. E. (1959). Relation of morphometric properties to runoff in the Little Mill Creek, Ohio, Drainage basin, (Rapor no: CU-TR-17). Columbia University (yayımlanmış).
  • MP (Mersin Portal) (2025, 06 Mayıs). Mersin 1968 – 2001 –2016 Değişmeyen Kaderi Sel. https://www.mersinportal.com/mersin/mersin-1968-2001-2016-degismeyen-kaderi-sel-h34102.html
  • Mueller, J. E. (1968). An Introduction to the hydraulic and topographic sinuosity indexes. Annals of the Association of American Geographers, 58(2), 371-385. https://www.jstor.org/stable/2561621
  • Mzobe, P., Yan, Y., Berggren, M., Pilesjö, P., Olefeldt, D., Lundin, E., Roulet, N. T. & Persson, A. (2020). Morphometric control on dissolved organic carbon in Subarctic streams. Journal of Geophysical Research: Biogeosciences, 125(9), 1-16. https://doi.org/10.1029/2019JG005348
  • Nieuwenhuizen, N. V., Lindsay, J. B. & DeVries, B. (2021). Smoothing of digital elevation models and the alteration of overland flow path length distributions. Hydrological Processes, 35(7), 1-12. https://doi.org/10.1002/hyp.14271
  • Ocak, F. & Bahadır, M. (2024). Evaluation of potential soil erosion areas in the Ladik Lake basin via AHP and GIS integration (Samsun, Türkiye). Journal of Geography 49, 83-96. https://doi.org/10.26650/JGEOG2024-1452908
  • Oguchi, T. (1997). Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surface Processes and Landforms, 22(2), 107-120. https://doi.org/10.1002/(SICI)1096-9837(199702)22:2<107::AID-ESP680>3.0.CO;2-U
  • Ohmori, H. (1993). Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation. Geomorphology, 8(4), 263-277. https://doi.org/10.1016/0169-555X(93)90023-U
  • Oruonye, E. D. & Ahmed, Y. M. (2021). Evaluation of erosion-prone areas in Lamurde River basin, Nigeria using morphometric prioritization method. Journal of Geography, Environment and Earth Science International, 25(8) 17-31. https://doi.org/10.9734/jgeesi/2021/v25i830301
  • Ödeker, B. ve Türkoğlu, N. (2020). Sabuncular Deresi havzasının (Rize/Çayeli) morfometrik özelliklerinin Coğrafi Bilgi Sistemleri (CBS) ile belirlenmesi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 60(1), 14-38.
  • Özdemir, H. & Bird, D. K. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and dem in point of floods. Environmental Geology, 56(7), 1405-1415. https://doi.org/10.1007/s00254-008-1235-y
  • Özdemir, H. (2011). Havza Morfometrisi ve Taşkınlar In D. Ekinci (Ed.), Fiziki Coğrafya Araştırmaları: Sistematik ve Bölgesel, (ss. 507-526). Babil.
  • Paliaga, G., Faccini, F., Luino, F., & Turconi, L. (2019). A spatial multicriteria prioritizing approach for geo-hydrological risk mitigation planning in small and densely urbanized Mediterranean basins. Natural Hazards and Earth System Sciences, 19(1), 53-69. https://doi.org/10.5194/nhess-19-53-2019
  • Pande, C. B. & Moharir, K. N. (2017). GIS based quantitative morphometric analysis and its consequences: a case study from Shanur River basin, Maharashtra India. Applied Water Science, 7(2), 861-871. https://doi.org/10.1007/s13201-015-0298-7
  • Parveen, R., Kumar, U. & Singh, V. K. (2012). Geomorphometric characterization of upper South Koel basin, Jharkhand: A Remote Sensing & GIS Approach. Journal of Water Resource and Protection, 4(12), 1042-1050. https://doi.org/10.4236/jwarp.2012.412120
  • Poisson, A. (1977). Recherces geologiques dans les Taurides occidentales (Turquie) [Ph.D. Thesis], Université Paris-Sud Orsay.
  • Reddy, G. P. O., Maji, A. K. & Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India – a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1), 1-16. https://doi.org/10.1016/j.jag.2004.06.003
  • Romshoo, S. A., Bhat, S. A., & Rashid, I. (2012). Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the upper Indus basin. Journal of Earth System Science, 121(3), 659-686. https://doi.org/10.1007/s12040-012-0192-8
  • Samal, D. R., Gedam, S. S. & Nagarajan, R. (2015). GIS based drainage morphometry and its influence on hydrology inparts of western Ghats region, Maharashtra, India. Geocarto International, 30(7), 755-778. https://doi.org/10.1080/10106049.2014.978903
  • Segnalini, M., Nardone, A., Bernabucci, U., Vitali, A., Ronchi, B., & Lacetera, N. (2010). Dynamics of the temperature-humidity index in the Mediterranean basin. International Journal of Biometeorology, 55(2), 253-263. https://doi.org/10.1007/s00484-010-0331-3
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. Geological Society of American Bulletin, 67(5), 597-646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
  • Shekar, P. R. & Mathew, A. (2024). Morphometric analysis of watersheds: A comprehensive review of data sources, quality, and geospatial techniques. Watershed Ecology and the Environment, 6, 13-25. https://doi.org/10.1016/j.wsee.2023.12.001
  • Sherzad, S. & Tharavathy, N. C. (2022). Morphometric analysis of Baghlan province for Amu river basin in Afghanistan using remote sensing and GIS. Ecology, Environment and Conservation, 28(2), 964-974. https://doi.org/10.53550/eec.2022.v28i02.059
  • Shreve, R. L. (1969). Stream lengths and basin areas in topologically random channel networks. The Journal of Geology, 77(4), 397-414. https://doi.org/10.1086/628366
  • Singh, M. C., Satpute, S. & Prasad, V. (2023). Remote sensing and GIS-based watershed prioritization for land and water conservation planning and management. Water Science & Technology, 88(1), 233–265. https://doi.org/10.2166/wst.2023.207
  • Singh, O., Sarangi, A. & Sharma, M. C. (2008). Hypsometric integral estimation methods and its relevance on erosion status of north-western lesser Himalayan watersheds. Water Resources Management, 22(11), 1545-1560. https://doi.org/10.1007/s11269-008-9242-z
  • Singh, R., Sahu, P., Kumari, S. & Chauhan, V. (2025). Assessing tectonic influence on landscape evolution: case study of the Nandakini watershed, Western Himalaya. Journal of Mountain Science, 22(2), 666-680. https://doi.org/10.1007/s11629-024-9065-2
  • Singh, W. R., Barman, S. & Tirkey, G. (2021). Morphometric analysis and watershed prioritization in relation to soil erosion in Dudhnai watershed. Applied Water Science, 11(9), 151. https://doi.org/10.1007/s13201-021-01483-5
  • Smith, K. G. (1950). Standards for grading textures of erosional topography. American Journal of Science, 248, 655-668. http://dx.doi.org/10.2475/ajs.248.9.655
  • Soni, S. (2016). Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh, India using geospatial technique. Applied Water Science, 7(5), 2089-2102. https://doi.org/10.1007/s13201-016-0395-2
  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117-1142. https://doi.org/10.1130/0016-7606(1952)63[1117:haaoet]2.0.co;2
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920. https://doi.org/10.1029/TR038i006p00913
  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. T. Chow (Ed.), Handbook of Applied Hydrology, (pp. 439-476). McGraw Hill Book Company.
  • Sukristiyanti, S., Maria, R. & Lestiana, H. (2018). Watershed-based morphometric analysis: a review. IOP Conference Series: Earth and Environmental Science, 118, 1-5. https://doi.org/10.1088/1755-1315/118/1/012028
  • Şenol, M., Şahin, Ş. ve Duman, T. Y. (1998). Adana-Mersin dolayının jeoloji etüt raporu (Rapor no: 10098). MTA (yayımlanmamış).
  • Tekin, S. (2019). Göksu Nehri havzasının coğrafi bilgi sistemleri tabanlı jeomorfometrik analizi ve niceliksel heyelan olası tehlike değerlendirmesi [Yayımlanmamış Doktora Tezi]. Çukurova Üniversitesi Fen Bilimleri Enstitüsü.
  • Thomas, J., Joseph, S. & Thrivikramaji, K. P. (2010). Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. International Journal of Digital Earth, 3(2), 135-156. https://doi.org/10.1080/17538940903464370
  • Thomas, J., Joseph, S., Thrivikramji, K. P. & Abe, G. (2011). Morphometric analysis of the drainage system and its hydrological implications in the Rain Shadow Regions, Kerala, India. Journal of Geographical Sciences, 21, 1077-1088. https://doi.org/10.1007/s11442-011-0901
  • Topuz, M. ve Karabulut, M. (2016). Limonlu ve Alata havzalarının (Mersin-Erdemli) jeomorfometrik analizi. Journal of Turkish Studies, 11(2), 1231-1231. https://doi.org/10.7827/turkishstudies.9165
  • Utlu, M. ve Özdemir, H. (2018). Havza morfometrik özelliklerinin taşkın üretmedeki rolü Biga Çayı havzası örneği. Journal of Geography, 36, 49-62. https://dergipark.org.tr/tr/pub/iucografya/issue/37715/408101#article_cite
  • Verstappen, H. (1983). Applied Geomorphology: Geomorphological Surveys for Environmental Development. Elsevier, New York.
  • Yıldırım, Ü. (2021a). Trabzon (KD Türkiye) akarsu vavzalarının Coğrafi Bilgi Sistemi kullanılarak morfometrik analiz yoluyla hidrolojik değerlendirmesi. Bartın Orman Fakültesi Dergisi, 23(1), 244-253. https://doi.org/10.24011/barofd.894180
  • Yıldırım, Ü. (2021b). Morphometric analysis to infer hydrological behaviour of Coruh River basin (Northern Turkey) using GIS technique. Fresenius Environmental Bulletin, 30(05), 4962-4974.
  • Zorer, H. ve Tonbul, S. (2019). Başkale havzasında havza gelişiminin jeomorfometrik analizlerle incelenmesi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 29(2), 19-38. https://doi.org/10.18069/firatsbed.536045
There are 110 citations in total.

Details

Primary Language Turkish
Subjects Hydrogeology, Geographic Information Systems
Journal Section Research Article
Authors

Ümit Yıldırım 0000-0002-7631-7245

Cüneyt Güler 0000-0001-8821-6532

Mehmet Ali Kurt 0000-0001-7255-2056

Onur Güven 0000-0001-5608-7633

Project Number 2015-TP3-1008
Publication Date December 11, 2025
Submission Date April 22, 2025
Acceptance Date July 4, 2025
Published in Issue Year 2025 Volume: 49 Issue: 2

Cite

APA Yıldırım, Ü., Güler, C., Kurt, M. A., Güven, O. (2025). Göksu Nehri ve Tarsus Çayı (Mersin) Arasında Yer Alan Akarsu Havzalarının Morfometrik Özellikleri. Jeoloji Mühendisliği Dergisi, 49(2), 55-76. https://doi.org/10.24232/jmd.1681674