Teaching Practice
BibTex RIS Cite

Van Hiele model level 5 teaching activity example for mathematically gifted students: expand polygon

Year 2023, Volume: 4 Issue: 2, 59 - 65, 30.12.2023

Abstract

Geometry is one of the sub-learning areas of mathematics and meaningful geometry learning includes reasoning methods such as generalizing, classifying, and inferring. Therefore, it improves students' mathematical thinking skills, increases their ability to support their thoughts with mathematical arguments, and positively affects their mathematics achievement in general. The aim of this study is to prepare an instructional activity for teaching geometry to gifted students in accordance with the 5th level they have reached in Van Hiele geometry learning levels. While preparing this teaching activity, the decomposition technique in the Pythagorean Proof Application in the study "Application of the Pythagorean Relation Expressed for Square to Other Regular Polygons and Circle" by Aslaner and İlhan (2018) was used. In the activity, the table is filled in by fulfilling the steps of disassembly and assembly in accordance with the instructions given, and a mathematical relationship is asked to be found between the polygons formed. The Expand Polygon activity can be used as an activity in the support education mathematics activities of gifted students and in the mathematics applications courses of middle school and high school students from the 7th grade onwards to improve students' reasoning and spatial skills.

References

  • Aslaner, R. & İlhan, A (2018). Kare için ifade edilen pisagor bağıntısının diğer düzgün çokgenlere ve daireye uygulanması [Application of the Pythagorean relation for the square to other regular polygons and the circle]. Buca Education Faculty Journal, 45, 55-67
  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (2000). How people learn: Brain, mind, experience, and school. National Academy Press.
  • Çetin, Ö.F., & Dane, A. (2004). Sınıf öğretmenliği III. sınıf öğrencilerinin geometrik bilgilere erişi düzeyleri üzerine [On the level of access to geometric knowledge of Classroom Teacher Education III. grade students]. Kastamonu Education Journal, 12(2), 427-436.
  • Demir, Ö. & Kurtuluş, A. (2019). Dönüşüm geometrisi öğretiminde 5E öğrenme modelinin 7. sınıf öğrencilerinin Van Hiele dönüşüm geometrisi düşünme düzeylerine etkisi [The effect of the 5E learning model in teaching transformation geometry on the Van Hiele transformation geometry thinking levels of 7th grade students]. Eskisehir Osmangazi University Journal of Social Science, 20 (Special Issue), 1-21.
  • Demirel, Ö., Seferolu, S. S., & Yacı, E. (2002). Öğretim teknolojileri ve materyal geliştirme (Instructional technology and material development). Pegem Publ.
  • Erdogan, F., & Gul, N. (2023). A new encryption task for mathematically gifted students: Encryption arising from patterns. Journal for the Education of Gifted Young Scientists, 11(3), 293-300.
  • Feldhusen, J. F. (2005). Giftedness, talent, expertise, and creative achievement. In R. J. Sternberg, & J. E. Davidson (Ed.), Conceptions of giftednes (pp. 64-80). Cambridge University Press.
  • Henningsen, M., & Stein, M.K. (1997). Mathematical tasks and student cognition: classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics Education, 28(5), 524-549.
  • Kuzgun, Y., & Deryakulu, D. (2004). Eğitimde bireysel farklılıklar [Individual Differences in Education]. Nobel Publ. Ministry of National Education (2009). İlköğretim matematik dersi 6-8. sınıflar programı ve kılavuzu [Primary mathematics course 6-8th grades programme and guide]. Ministry of National Education Publ.
  • Olkun, S. & Uçar Z. T. (2007). İlköğretimde etkinlik temelli matematik öğretimi [Activity-based mathematics teaching in primary education]. Maya Academy.
  • Özgen, K. & Alkan, H. (2014). Matematik öğretmen adaylarının etkinlik geliştirme becerilerinin incelenmesi [Investigation of activity development skills of prospective mathematics teachers]. Educational Sciences in Theory and Practice, 14(3), 1179-1201.
  • Sağır-Gürlevik, T. M. (2017). Üstün/özel yetenekli öğrencilerin geometri düzeylerinin bazı değişkenler açısından belirlenmesi [Determination of geometry levels of gifted/talented students in terms of some variables] (Unpublished master thesis). Dokuz Eylül University, Izmir.
Year 2023, Volume: 4 Issue: 2, 59 - 65, 30.12.2023

Abstract

References

  • Aslaner, R. & İlhan, A (2018). Kare için ifade edilen pisagor bağıntısının diğer düzgün çokgenlere ve daireye uygulanması [Application of the Pythagorean relation for the square to other regular polygons and the circle]. Buca Education Faculty Journal, 45, 55-67
  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (2000). How people learn: Brain, mind, experience, and school. National Academy Press.
  • Çetin, Ö.F., & Dane, A. (2004). Sınıf öğretmenliği III. sınıf öğrencilerinin geometrik bilgilere erişi düzeyleri üzerine [On the level of access to geometric knowledge of Classroom Teacher Education III. grade students]. Kastamonu Education Journal, 12(2), 427-436.
  • Demir, Ö. & Kurtuluş, A. (2019). Dönüşüm geometrisi öğretiminde 5E öğrenme modelinin 7. sınıf öğrencilerinin Van Hiele dönüşüm geometrisi düşünme düzeylerine etkisi [The effect of the 5E learning model in teaching transformation geometry on the Van Hiele transformation geometry thinking levels of 7th grade students]. Eskisehir Osmangazi University Journal of Social Science, 20 (Special Issue), 1-21.
  • Demirel, Ö., Seferolu, S. S., & Yacı, E. (2002). Öğretim teknolojileri ve materyal geliştirme (Instructional technology and material development). Pegem Publ.
  • Erdogan, F., & Gul, N. (2023). A new encryption task for mathematically gifted students: Encryption arising from patterns. Journal for the Education of Gifted Young Scientists, 11(3), 293-300.
  • Feldhusen, J. F. (2005). Giftedness, talent, expertise, and creative achievement. In R. J. Sternberg, & J. E. Davidson (Ed.), Conceptions of giftednes (pp. 64-80). Cambridge University Press.
  • Henningsen, M., & Stein, M.K. (1997). Mathematical tasks and student cognition: classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics Education, 28(5), 524-549.
  • Kuzgun, Y., & Deryakulu, D. (2004). Eğitimde bireysel farklılıklar [Individual Differences in Education]. Nobel Publ. Ministry of National Education (2009). İlköğretim matematik dersi 6-8. sınıflar programı ve kılavuzu [Primary mathematics course 6-8th grades programme and guide]. Ministry of National Education Publ.
  • Olkun, S. & Uçar Z. T. (2007). İlköğretimde etkinlik temelli matematik öğretimi [Activity-based mathematics teaching in primary education]. Maya Academy.
  • Özgen, K. & Alkan, H. (2014). Matematik öğretmen adaylarının etkinlik geliştirme becerilerinin incelenmesi [Investigation of activity development skills of prospective mathematics teachers]. Educational Sciences in Theory and Practice, 14(3), 1179-1201.
  • Sağır-Gürlevik, T. M. (2017). Üstün/özel yetenekli öğrencilerin geometri düzeylerinin bazı değişkenler açısından belirlenmesi [Determination of geometry levels of gifted/talented students in terms of some variables] (Unpublished master thesis). Dokuz Eylül University, Izmir.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematics Education
Journal Section Teaching Techniques and Activities in Math Education
Authors

Tuba Erben

Early Pub Date December 22, 2023
Publication Date December 30, 2023
Submission Date November 12, 2023
Acceptance Date December 20, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Erben, T. (2023). Van Hiele model level 5 teaching activity example for mathematically gifted students: expand polygon. Journal for the Mathematics Education and Teaching Practices, 4(2), 59-65.