Research Article
BibTex RIS Cite

VERİ TABANLI PAZARLAMA VE MAKİNE ÖĞRENMESİ İLE MÜŞTERİ BÖLÜMLEME VE DAVRANIŞ MODELLERİNİN BELİRLENMESİ

Year 2021, , 89 - 111, 30.06.2021
https://doi.org/10.17261/Pressacademia.2021.1409

Abstract

Amaç - Çalışma, günümüz işletmeleri açısından önemi son derece artan veri tabanlı pazarlamanın, müşteri bölümleri oluşturulmasına ve oluşan bölümlere yönelik pazarlama stratejilerinin geliştirilmesine etkisini araştırmaktadır. Bu doğrultuda analiz edilen gerçek müşteri verilerinden oluşan büyük veri çalışması, birbirinden farklı stratejiler geliştirebilecek kadar benzer olmayan tüketici davranışlarını belirlemesi ve müşteri bölümlerine yönelik strateji geliştirme süreçlerinin nasıl analitik olarak yapılabileceğini tespit etme amacını taşımaktadır.
Yöntem - Türkiye genelinde evlere servis alanında faaliyet gösteren uluslararası bir pizza markasının 2018 yılına ait sipariş verileri baz alınarak, toplam 24 milyon satır uzunluğunda veri seti ile çalışılmıştır. Çalışmada müşteri bölümlendirmesi için K Means, Gaussian Mixture ve DBSCAN algoritmaları kullanılmıştır. Söz konusu kümeleme ve çoklu regresyon analizleri Phyton programı ile uygulanmıştır.
Bulgular - Literatürde en çok kullanılan kümeleme algoritmalarının test edildiği bu çalışmada, DBSCAN algoritmasının, uygulamada kullanılan veri setine uygun olmaması nedeniyle tüm verinin %91’ini bir kümeye atarak geri kalan verileri, outlier farklı bir ifade ile aykırı olarak sınıflandırmıştır. Bu doğrultuda içerisinde demografik verinin bulunmadığı, davranışsal özelliklerin verinin anakütlesini oluşturduğu çalışmalarda K Means veya Gaussian Mixture gibi algoritmaların daha iyi sonuç verdiği gözlenmiştir. Bununla birlikte oluşturulan kümelerin ileriye yönelik davranışlarının analiz edildiği çoklu regresyon analizlerinde, benzer davranış sergileyen kümelerin tespiti ile alt kümelerde bulunan değerli kümelerin keşfi sağlanmıştır.
Sonuç - Bu çalışma, büyük veri ve veri madenciliği adımlarını kapsarken, bununla birlikte müşteri kümelerinin oluşturulması, belirlenen kümelerin ileriye yönelik davranış modellerinin belirlenmesi için yapılan çoklu regresyon analizleri ile uçtan uça tüm süreçleri kapsamaktadır. Bu doğrultuda uygulayıcılara örnek bir model ve strateji belirleme metodolojisi sunmaktadır.

References

  • Alpaydın, E. (2013). Yapay Öğrenme (2. Baskı). İstanbul: Boğaziçi Üniversitesi Yayınevi.
  • Calinski, T. Harabasz, J. (1974). A dendrite method for cluster analysis. Communication in Statistics. 3(1): 1-27.
  • Canepa, G.A. (2016). What You Need To Know About Machine Learning. Birmingham: Packt Publishing.
  • Chaffey, D. (2009). E-Business and E-Commerce Management: Strategy Implementation and Practice, London: Pearson Prentice Hall.
  • Cui, G. Wong, M.L. Lui, H. (2006). Machine learning for direct marketing response models: bayesian networks with evolutionary programming. Management Science. 52(4): 597-612.
  • Davies, D.L. Bouldin, D.W. (1979). A cluser separation measure. IEEE Transactions On Pattern Recognition and Machine Intelligence. 1(2): 224-227.
  • Dibb, S. Meadows, M. (2004). Relationship marketing and CRM: a financial services case study. Journal of Strategic Marketing. 12(2): 111-125.
  • Durmuş, M.S. İplikçi, S. (2007). Veri kümeleme algoritmalarının performansları üzerine karşılaştırılmalı bir çalışma. Akademik Bilişim Konferansı Bildirileri. 393-400.
  • Gülcan, B. (2000). Sadık müşteri yaratabilme ve sürekli satış yapabilmenin yolu: veri tabanlı pazarlama. Ticaret ve Turizm Eğitim Fakültesi Dergisi. 3: 27-48.
  • Harrigan, K.R. (1985). An application of clustering for strategic group analysis. Strategic Management Journal. 6(1): 55-73.
  • Haşıloğlu, S.B. Sezgin, M. Bardakçı, A. (2008). Hizmet sektöründeki veritabanlı pazarlama araştırmalarının değerlendirilmesi. KMU İİBF Dergisi. 10(14): 228-240.
  • Hoda, M. Jocumens G. (2003). How to implement marketing strategies using database approaches? Journal of Database Marketing & Customer Strategy Management. 11(2): 135-148.
  • Jackson, R. Wang, P. (1996). Strategic Database Marketing. İllinois: NTC Publishing Group.
  • Kantardzic, M. (2011). Data Mining: Concepts Models Methods And Algorithms. New Jersey: John Wiley & Sons Inc.
  • Ketchen, D. Shook, C.L. (1996). The application of cluster analysis in strategic management research: an analysis and critique. Strategic Management Journal. 17(6): 441-458.
  • Kordinariya, T.M. Makwana, P.R. (2013). Review on determining number of cluster in k-means clustering. International Journal of Advance Research in Computer Science and Management Studies. 1(6): 90-95.
  • Koslowsky, S. (1999). Reducing your risk: whats’s happening in retail database marketing. Direct Marketing. 61(9): 40-43.
  • Kotler, P. Armstrong, G. (1999). Principles of Marketing (8. Baskı). New Jersey: Prentice Hall.
  • Lantz, B. (2013). Equidistance of likert-type scales and validation of inferential methods using experiments and simulations. Electronic Journal of Business Research Methods. 11(1): 16-28.
  • MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of Fifth Berkeley Symposium on Mathematical Statistics And Probability. University of California. 1: 281-297.
  • Mohri, M. Rostamizadeh, A. Talwalkar, A. (2012). Foundations of Machine Learning. London: MIT Press.
  • Rousseeuw, P.J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics. 20: 53-65.
  • Sambamoorti, N. (1999). Hierarchical cluster analysis: some basics and algorithms. http://www.crmportals.com/hierarchical_cluster_analysis.pdf. (Erişim Tarihi: 11/12/2019)
  • Turing, A. (1950). Computing machinery and intelligence: mind. Quarterly Review of Psychology and Philosophy. 236(59): 433-460.
  • Verhoef, P.C. Spring, P.N. Hoekstra, J.C. Leeflang, P.S.H. (2003). The commercial use of segmentation and predictive modeling techniques for database marketing in the Netherlands. Decision Support Systems. 34(4): 471-481.
  • Yılmaz, Ş. Patır, S. (2011). Kümeleme analizi ve pazarlamada kullanımı. Akademik Yaklaşımlar Dergisi. 2(1): 91-113

DETERMINING CUSTOMER SEGMENTATION AND BEHAVIOR MODELS WITH DATABASE MARKETING AND MACHINE LEARNING

Year 2021, , 89 - 111, 30.06.2021
https://doi.org/10.17261/Pressacademia.2021.1409

Abstract

Purpose- The study investigates the effect of data-based marketing, which is of great importance for today's businesses, on the creation of customer segments and on the development of marketing strategies for those segments. The big data study, which consists of real customer data analyzed in this direction, aims to identify consumer behaviors that are not similar enough to develop different strategies and to determine how the strategy development processes for customer segments can be done analytically.
Methodology- It was studied according to the 2018 order data, which is a data set of 24 million lines in total from an international pizza brand operating in the home delivery service field across the Turkey. In the study, K Means, Gaussian Mixture and DBSCAN algorithms are used for customer segmentation. The clustering and multiple regression analyzes were applied with the Phyton program.
Findings- In this study, in which the most used clustering algorithms in the literature were tested, due to the fact that the DBSCAN algorithm is not suitable for the data set used in the application, 91% of all data is assigned to a cluster in the cluster analysis and the remaining data are classified outlier. Accordingly, it has been observed that algorithms such as K Means or Gaussian Mixture give better results in studies where there is no demographic data and behavioral characteristics form the main mass of the data. In addition, clusters exhibiting similar behavior were identified in multiple regression analyzes, in which the forward-looking behaviors of the formed clusters were analyzed, and valuable clusters in the sub-clusters were discovered.
Conclusion- While this study covers the steps of big data and data mining, it also covers all end to end processes with multiple regression analyzes to create customer clusters and determine the future behavior models of the determined clusters. In this direction, it offers practitioners an exemplary model and strategy determination methodology.

References

  • Alpaydın, E. (2013). Yapay Öğrenme (2. Baskı). İstanbul: Boğaziçi Üniversitesi Yayınevi.
  • Calinski, T. Harabasz, J. (1974). A dendrite method for cluster analysis. Communication in Statistics. 3(1): 1-27.
  • Canepa, G.A. (2016). What You Need To Know About Machine Learning. Birmingham: Packt Publishing.
  • Chaffey, D. (2009). E-Business and E-Commerce Management: Strategy Implementation and Practice, London: Pearson Prentice Hall.
  • Cui, G. Wong, M.L. Lui, H. (2006). Machine learning for direct marketing response models: bayesian networks with evolutionary programming. Management Science. 52(4): 597-612.
  • Davies, D.L. Bouldin, D.W. (1979). A cluser separation measure. IEEE Transactions On Pattern Recognition and Machine Intelligence. 1(2): 224-227.
  • Dibb, S. Meadows, M. (2004). Relationship marketing and CRM: a financial services case study. Journal of Strategic Marketing. 12(2): 111-125.
  • Durmuş, M.S. İplikçi, S. (2007). Veri kümeleme algoritmalarının performansları üzerine karşılaştırılmalı bir çalışma. Akademik Bilişim Konferansı Bildirileri. 393-400.
  • Gülcan, B. (2000). Sadık müşteri yaratabilme ve sürekli satış yapabilmenin yolu: veri tabanlı pazarlama. Ticaret ve Turizm Eğitim Fakültesi Dergisi. 3: 27-48.
  • Harrigan, K.R. (1985). An application of clustering for strategic group analysis. Strategic Management Journal. 6(1): 55-73.
  • Haşıloğlu, S.B. Sezgin, M. Bardakçı, A. (2008). Hizmet sektöründeki veritabanlı pazarlama araştırmalarının değerlendirilmesi. KMU İİBF Dergisi. 10(14): 228-240.
  • Hoda, M. Jocumens G. (2003). How to implement marketing strategies using database approaches? Journal of Database Marketing & Customer Strategy Management. 11(2): 135-148.
  • Jackson, R. Wang, P. (1996). Strategic Database Marketing. İllinois: NTC Publishing Group.
  • Kantardzic, M. (2011). Data Mining: Concepts Models Methods And Algorithms. New Jersey: John Wiley & Sons Inc.
  • Ketchen, D. Shook, C.L. (1996). The application of cluster analysis in strategic management research: an analysis and critique. Strategic Management Journal. 17(6): 441-458.
  • Kordinariya, T.M. Makwana, P.R. (2013). Review on determining number of cluster in k-means clustering. International Journal of Advance Research in Computer Science and Management Studies. 1(6): 90-95.
  • Koslowsky, S. (1999). Reducing your risk: whats’s happening in retail database marketing. Direct Marketing. 61(9): 40-43.
  • Kotler, P. Armstrong, G. (1999). Principles of Marketing (8. Baskı). New Jersey: Prentice Hall.
  • Lantz, B. (2013). Equidistance of likert-type scales and validation of inferential methods using experiments and simulations. Electronic Journal of Business Research Methods. 11(1): 16-28.
  • MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of Fifth Berkeley Symposium on Mathematical Statistics And Probability. University of California. 1: 281-297.
  • Mohri, M. Rostamizadeh, A. Talwalkar, A. (2012). Foundations of Machine Learning. London: MIT Press.
  • Rousseeuw, P.J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics. 20: 53-65.
  • Sambamoorti, N. (1999). Hierarchical cluster analysis: some basics and algorithms. http://www.crmportals.com/hierarchical_cluster_analysis.pdf. (Erişim Tarihi: 11/12/2019)
  • Turing, A. (1950). Computing machinery and intelligence: mind. Quarterly Review of Psychology and Philosophy. 236(59): 433-460.
  • Verhoef, P.C. Spring, P.N. Hoekstra, J.C. Leeflang, P.S.H. (2003). The commercial use of segmentation and predictive modeling techniques for database marketing in the Netherlands. Decision Support Systems. 34(4): 471-481.
  • Yılmaz, Ş. Patır, S. (2011). Kümeleme analizi ve pazarlamada kullanımı. Akademik Yaklaşımlar Dergisi. 2(1): 91-113
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Business Administration
Journal Section Articles
Authors

Orkun Koca 0000-0002-2862-1226

Publication Date June 30, 2021
Published in Issue Year 2021

Cite

APA Koca, O. (2021). VERİ TABANLI PAZARLAMA VE MAKİNE ÖĞRENMESİ İLE MÜŞTERİ BÖLÜMLEME VE DAVRANIŞ MODELLERİNİN BELİRLENMESİ. Journal of Management Marketing and Logistics, 8(2), 89-111. https://doi.org/10.17261/Pressacademia.2021.1409

Journal of Management, Marketing and Logistics (JMML) is a scientific, academic, double blind peer-reviewed, quarterly and open-access online journal. The journal publishes four issues a year. The issuing months are March, June, September and December. The publication languages of the Journal are English and Turkish. JMML aims to provide a research source for all practitioners, policy makers, professionals and researchers working in the areas of management, marketing, logistics, supply chain management, international trade. The editor in chief of JMML invites all manuscripts that cover theoretical and/or applied researches on topics related to the interest areas of the Journal. JMML charges no submission or publication fee.


Ethics Policy - JMML applies the standards of Committee on Publication Ethics (COPE). JMML is committed to the academic community ensuring ethics and quality of manuscripts in publications. Plagiarism is strictly forbidden and the manuscripts found to be plagiarized will not be accepted or if published will be removed from the publication. Authors must certify that their manuscripts are their original work. Plagiarism, duplicate, data fabrication and redundant publications are forbidden. The manuscripts are subject to plagiarism check by iThenticate or similar. All manuscript submissions must provide a similarity report (up to 15% excluding quotes, bibliography, abstract, method).


Open Access - All research articles published in PressAcademia Journals are fully open access; immediately freely available to read, download and share. Articles are published under the terms of a Creative Commons license which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Open access is a property of individual works, not necessarily journals or publishers. Community standards, rather than copyright law, will continue to provide the mechanism for enforcement of proper attribution and responsible use of the published work, as they do now.