Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 2, 47 - 56, 25.03.2021

Abstract

References

  • A. R. Leach, Molecular Modelling: Principles and Applications, Prentice Hall, Harlow, 88-92, 2001.
  • J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Pittsburgh, PA, 1996. H.N. Graham, Green tea composition, consumption, and polyphenol chemistry, Prev. Med. 21 1992 334-350.
  • H. Mukhtar, Z.Y. Wang, S.K. Katiyar and R. Agarwal, Tea components: antimutagenic and anticarcinogenic e¡ects, Prev. Med. 21 1992, 351-360.
  • Z.Y. Wang, S.J. Cheng, Z.C. Zhou, M. Athar, W.A. Khan, D.R. Bickers and H. Mukh-tar, Antimutagenic activity of gren tea polyphenols, Mutat. Res. 223 1989, 273-289.
  • Z.G. Dong, W.Y. Ma, C.S. Huang and C.S. Yang, Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (3)-epigallokateşin gallate, and thea£avins, Cancer Res. 57 1997, 4414-4419.
  • C.S. Yang and Z.Y. Wang, Tea and cancer, J. Natl. Cancer Inst. 58 1993, 1038-1049.
  • S. Yoshizawa, T. Horiuchi, H. Fujiki, T. Yoshida, T. Okuda and T. Sugimura, Antitumor promoting activity of (3)-epigallokateşin gallate, the main constituent of `tannin' in green tea, Photother. Res. 1 1987, 44-47.
  • N. Salah, N.J. Miller, G. Paganga, L. Tijiburg, G.P. Bolwell and C. Rice-Evans, Polyphenolic £avonols as scavengers of aqueous phase radicals and as chain-breaking anti-oxidants, Arch. Biochem. Biophys. 322 1995, 339-346.
  • T. Hatano, R. Edamatsu, M. Hiramatsu, A. Mori, Y. Fujita, T. Yasuhara and T. Okuda, Ejects of the interaction of tannins with co-existing substances. VI. Ejects of tannins and rela-ted polyphenols on superoxide anion radical, and on 1,1- diphenyl-2-picrylhydrazyl radical, Chem. Pharm. Bull. 37 1989, 2016-2021.
  • G. Sichel, C. Corsaro, M. Scalia, A.J. DiBilio and R.P. Bonomo, In vitro scavenger activity of some £avonoids and melanins against O3W 2, Free Radic. Biol. Med. 11 1991, 1-8.
  • Q. Guo, B.L. Zhao, M.F. Li, S.R. Shen and W.J. Xin, Studies on protective mecha-nisms of four components of green tea polyphenols against lipid peroxidation in synaptoso-mes, Biochem. Biophys. Acta 1304 1996, 210-222.
  • S.R. Shen, X.Q. Yang, F.J. Ya, B.L. Zhao, W.J. Xin and H. Yukihiko, Coordinatingly synergic e¡ect of kateşins during their antioxidant, J. Tea. Sci. 13 1993, 141-146.
  • M. J. Frisch, et al., GAUSSIAN 03, Revision C.02, Gaussian Inc., Pittsburgh, PA, 2003.
  • A. Frish, A. B. Nielsen, A. J. Holder, Gauss View User Manual, Gaussian Inc. Pitts-burg, PA, 2001.
  • D. C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, (Electronics), John Wiley & Sons, Inc., New York 2001, p.92.
  • M. H. Jamróz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004.
  • R. Ditchfield, Self-consistent perturbation theory of diamagnetism. 1. Gauge-invariant LCAO method for N.M.R. chemical shifts, Mol. Phys., 27 1974 789-807.
  • C. M. Rohlfing, L. C. Allen and R. Ditchfield, Proton and 13C chemical shifts: com-parison between theory and experiment, Chem. Phys. 87 1984, 9-15.
  • L. Spek and B. Kojıc-Prodı, Structure of (-)-Epicatechin: (2R,3R)-2-(3,4-Dihyroxyphenyl)-3,4-dihydro-2H- lbenzopyran-3,5,7-triol, C15H1406, Acta Cryst. C40 1984 2068-2071.
  • Spectral Database for Organic Compounds, SDBS. National Institute of Advanced Industrial Science and Technology (AIST), Japan. http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi

Structural and Spectral Analysis of Epicatechin Molecule by Density Functional Theory Method

Year 2020, Volume: 3 Issue: 2, 47 - 56, 25.03.2021

Abstract

In this study, firstly the minimum energy structure of the title compound was determined by a result of the scanning of the potential energy surface at DFT(B3LYP)/6-31 G (d, p) from -180o to -180o at 20o steps at a dihedral angle. Then, the ground state optimized structure and spectral results of the molecule were calculated by using DFT(B3LYP) method at 6-311++G(d,p) level of theory. Its optimized structure parameters (bond lengths, bond angles and torsion angles), vibrational frequencies and chemical shift values were listed and, compared with the corresponding experimental results.

References

  • A. R. Leach, Molecular Modelling: Principles and Applications, Prentice Hall, Harlow, 88-92, 2001.
  • J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Pittsburgh, PA, 1996. H.N. Graham, Green tea composition, consumption, and polyphenol chemistry, Prev. Med. 21 1992 334-350.
  • H. Mukhtar, Z.Y. Wang, S.K. Katiyar and R. Agarwal, Tea components: antimutagenic and anticarcinogenic e¡ects, Prev. Med. 21 1992, 351-360.
  • Z.Y. Wang, S.J. Cheng, Z.C. Zhou, M. Athar, W.A. Khan, D.R. Bickers and H. Mukh-tar, Antimutagenic activity of gren tea polyphenols, Mutat. Res. 223 1989, 273-289.
  • Z.G. Dong, W.Y. Ma, C.S. Huang and C.S. Yang, Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (3)-epigallokateşin gallate, and thea£avins, Cancer Res. 57 1997, 4414-4419.
  • C.S. Yang and Z.Y. Wang, Tea and cancer, J. Natl. Cancer Inst. 58 1993, 1038-1049.
  • S. Yoshizawa, T. Horiuchi, H. Fujiki, T. Yoshida, T. Okuda and T. Sugimura, Antitumor promoting activity of (3)-epigallokateşin gallate, the main constituent of `tannin' in green tea, Photother. Res. 1 1987, 44-47.
  • N. Salah, N.J. Miller, G. Paganga, L. Tijiburg, G.P. Bolwell and C. Rice-Evans, Polyphenolic £avonols as scavengers of aqueous phase radicals and as chain-breaking anti-oxidants, Arch. Biochem. Biophys. 322 1995, 339-346.
  • T. Hatano, R. Edamatsu, M. Hiramatsu, A. Mori, Y. Fujita, T. Yasuhara and T. Okuda, Ejects of the interaction of tannins with co-existing substances. VI. Ejects of tannins and rela-ted polyphenols on superoxide anion radical, and on 1,1- diphenyl-2-picrylhydrazyl radical, Chem. Pharm. Bull. 37 1989, 2016-2021.
  • G. Sichel, C. Corsaro, M. Scalia, A.J. DiBilio and R.P. Bonomo, In vitro scavenger activity of some £avonoids and melanins against O3W 2, Free Radic. Biol. Med. 11 1991, 1-8.
  • Q. Guo, B.L. Zhao, M.F. Li, S.R. Shen and W.J. Xin, Studies on protective mecha-nisms of four components of green tea polyphenols against lipid peroxidation in synaptoso-mes, Biochem. Biophys. Acta 1304 1996, 210-222.
  • S.R. Shen, X.Q. Yang, F.J. Ya, B.L. Zhao, W.J. Xin and H. Yukihiko, Coordinatingly synergic e¡ect of kateşins during their antioxidant, J. Tea. Sci. 13 1993, 141-146.
  • M. J. Frisch, et al., GAUSSIAN 03, Revision C.02, Gaussian Inc., Pittsburgh, PA, 2003.
  • A. Frish, A. B. Nielsen, A. J. Holder, Gauss View User Manual, Gaussian Inc. Pitts-burg, PA, 2001.
  • D. C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, (Electronics), John Wiley & Sons, Inc., New York 2001, p.92.
  • M. H. Jamróz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004.
  • R. Ditchfield, Self-consistent perturbation theory of diamagnetism. 1. Gauge-invariant LCAO method for N.M.R. chemical shifts, Mol. Phys., 27 1974 789-807.
  • C. M. Rohlfing, L. C. Allen and R. Ditchfield, Proton and 13C chemical shifts: com-parison between theory and experiment, Chem. Phys. 87 1984, 9-15.
  • L. Spek and B. Kojıc-Prodı, Structure of (-)-Epicatechin: (2R,3R)-2-(3,4-Dihyroxyphenyl)-3,4-dihydro-2H- lbenzopyran-3,5,7-triol, C15H1406, Acta Cryst. C40 1984 2068-2071.
  • Spectral Database for Organic Compounds, SDBS. National Institute of Advanced Industrial Science and Technology (AIST), Japan. http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Fatıma Demir This is me 0000-0003-0439-4820

Mustafa Karakaya This is me 0000-0001-6663-9008

Fatih Ucun 0000-0001-7464-7788

Publication Date March 25, 2021
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Demir, F., Karakaya, M., & Ucun, F. (2021). Structural and Spectral Analysis of Epicatechin Molecule by Density Functional Theory Method. Journal of Multidisciplinary Modeling and Optimization, 3(2), 47-56.
AMA Demir F, Karakaya M, Ucun F. Structural and Spectral Analysis of Epicatechin Molecule by Density Functional Theory Method. jmmo. March 2021;3(2):47-56.
Chicago Demir, Fatıma, Mustafa Karakaya, and Fatih Ucun. “Structural and Spectral Analysis of Epicatechin Molecule by Density Functional Theory Method”. Journal of Multidisciplinary Modeling and Optimization 3, no. 2 (March 2021): 47-56.
EndNote Demir F, Karakaya M, Ucun F (March 1, 2021) Structural and Spectral Analysis of Epicatechin Molecule by Density Functional Theory Method. Journal of Multidisciplinary Modeling and Optimization 3 2 47–56.
IEEE F. Demir, M. Karakaya, and F. Ucun, “Structural and Spectral Analysis of Epicatechin Molecule by Density Functional Theory Method”, jmmo, vol. 3, no. 2, pp. 47–56, 2021.
ISNAD Demir, Fatıma et al. “Structural and Spectral Analysis of Epicatechin Molecule by Density Functional Theory Method”. Journal of Multidisciplinary Modeling and Optimization 3/2 (March 2021), 47-56.
JAMA Demir F, Karakaya M, Ucun F. Structural and Spectral Analysis of Epicatechin Molecule by Density Functional Theory Method. jmmo. 2021;3:47–56.
MLA Demir, Fatıma et al. “Structural and Spectral Analysis of Epicatechin Molecule by Density Functional Theory Method”. Journal of Multidisciplinary Modeling and Optimization, vol. 3, no. 2, 2021, pp. 47-56.
Vancouver Demir F, Karakaya M, Ucun F. Structural and Spectral Analysis of Epicatechin Molecule by Density Functional Theory Method. jmmo. 2021;3(2):47-56.