Research Article
BibTex RIS Cite
Year 2024, , 75 - 81, 31.08.2024
https://doi.org/10.33187/jmsm.1426590

Abstract

References

  • [1] R.M. Miura, C.S. Gardner, M.D. Kruskal, Korteweg de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204-1209.
  • [2] S. Watanabe, Ion acoustic soliton in plasma with negative ion, J. Phys. Soc. Japan, 53 (1984), 950-956.
  • [3] M.S. Ruderman, T. Talipova, E. Pelinovsky, Dynamics of modulationally unstable ion-acoustic wavepackets in plasmas with negative ions, J. Plasma Phys., 74 (2008), 639-656.
  • [4] R. Grimshaw, Environmental Stratified Flows, Topics in Environmental Fluid Mechanics, Kluwer, 2002.
  • [5] E. Demler, A. Maltsev, Semiclassical solitons in strongly correlated systems of ultracold bosonic atoms in optical lattices, Ann. Phys., 326 (2011), 1775-1805.
  • [6] A.H. Khater, A.A. Abdallah, O.H. El-Kalaawy, D.K. Callebaut, Backlund transformations, a simple transformation and exact solutions for dust-acoustic solitary waves in dusty plasma consisting of cold dust particles and two-temperature isothermal ions, Phys. Plasmas, 6 (1999), 4542-4547.
  • [7] R. Grimshaw, D. Pelinovsky, E. Pelinovsky, T. Talipova, Wave group dynamics in weakly nonlinear long-wave models, Phys. D, 159 (2001), 35-37.
  • [8] K.R. Helfrich, W.K. Melville, Long nonlinear internal waves, Annu. Rev. Fluid Mech., 38 (2006), 395-425.
  • [9] J.R. Apel, L.A. Ostrovsky, Y.A. Stepanyants, J.F. Lynch, Internal solitons in the ocean and their effect on underwater sound, J. Acoust. Soc. Am., 121 (2007), 695-722
  • [10] M. Wadati, Wave propagation in nonlinear lattice III, J. Phys. Soc. Jpn., 38 (1975), 681-686.
  • [11] M. Coffey On series expansions giving closed form solutions of Korteweg de Vries like equations, J. Appl. Math., 50(6) (1990), 1580-1592.
  • [12] S.Y. Lou, L.L Chen, Solitary wave solutions and cnoidal wave solutions to the combined KdV and mKdV equation, Math Meth. Appl. Sci., 17 (1994), 339-347.
  • [13] J Zhang, New solitary wave solution of the combined KdV and mKdV equation, Int. Jour. Theo. Phys., 37 (1998), 1541-1546.
  • [14] L. Lin, S. Zhu, Y. Xu, Y. Shi, Exact solutions of Gardner equations through tanh coth method, Appl. Math., 7 (2016), 2374-2381.
  • [15] B. Ghanbari, D. Baleanu, New solutions of Gardner’s equation using two analytical methods, Front. In Phys., 7 (2015), 1-15.
  • [16] M. Bokaeeyan, A. Ankiewicz, N. Akhmediev, Bright and dark rogue internal waves, the Gardner equation approach, Phys. Rev. E, 99 (2019), 062224-1-7.
  • [17] A. Ankiewicz, M. Bokaeeyan, Integral relations for rogue wave formations of Gardner equation, Nonlinear Dyn, 99 (2020), 2939-2944.
  • [18] P. Gaillard, The mKdV equation and multi-parameters rational solutions, Wave Motion, 100, (2021), 102667-1-9.

N-order solutions to the Gardner equation in terms of Wronskians

Year 2024, , 75 - 81, 31.08.2024
https://doi.org/10.33187/jmsm.1426590

Abstract

$N$-order solutions to the Gardner equation (G) are given in terms of Wronskians of order $N$ depending on $2N$ real parameters. We get solutions expressed with trigonometric or hyperbolic functions.

When one of the parameters goes to $0$, we succeed to get for each positive integer $N$, rational solutions as a quotient of polynomials in $x$ and $t$ depending on $2N$ real parameters. We construct explicit expressions of these rational solutions for the first orders.

References

  • [1] R.M. Miura, C.S. Gardner, M.D. Kruskal, Korteweg de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204-1209.
  • [2] S. Watanabe, Ion acoustic soliton in plasma with negative ion, J. Phys. Soc. Japan, 53 (1984), 950-956.
  • [3] M.S. Ruderman, T. Talipova, E. Pelinovsky, Dynamics of modulationally unstable ion-acoustic wavepackets in plasmas with negative ions, J. Plasma Phys., 74 (2008), 639-656.
  • [4] R. Grimshaw, Environmental Stratified Flows, Topics in Environmental Fluid Mechanics, Kluwer, 2002.
  • [5] E. Demler, A. Maltsev, Semiclassical solitons in strongly correlated systems of ultracold bosonic atoms in optical lattices, Ann. Phys., 326 (2011), 1775-1805.
  • [6] A.H. Khater, A.A. Abdallah, O.H. El-Kalaawy, D.K. Callebaut, Backlund transformations, a simple transformation and exact solutions for dust-acoustic solitary waves in dusty plasma consisting of cold dust particles and two-temperature isothermal ions, Phys. Plasmas, 6 (1999), 4542-4547.
  • [7] R. Grimshaw, D. Pelinovsky, E. Pelinovsky, T. Talipova, Wave group dynamics in weakly nonlinear long-wave models, Phys. D, 159 (2001), 35-37.
  • [8] K.R. Helfrich, W.K. Melville, Long nonlinear internal waves, Annu. Rev. Fluid Mech., 38 (2006), 395-425.
  • [9] J.R. Apel, L.A. Ostrovsky, Y.A. Stepanyants, J.F. Lynch, Internal solitons in the ocean and their effect on underwater sound, J. Acoust. Soc. Am., 121 (2007), 695-722
  • [10] M. Wadati, Wave propagation in nonlinear lattice III, J. Phys. Soc. Jpn., 38 (1975), 681-686.
  • [11] M. Coffey On series expansions giving closed form solutions of Korteweg de Vries like equations, J. Appl. Math., 50(6) (1990), 1580-1592.
  • [12] S.Y. Lou, L.L Chen, Solitary wave solutions and cnoidal wave solutions to the combined KdV and mKdV equation, Math Meth. Appl. Sci., 17 (1994), 339-347.
  • [13] J Zhang, New solitary wave solution of the combined KdV and mKdV equation, Int. Jour. Theo. Phys., 37 (1998), 1541-1546.
  • [14] L. Lin, S. Zhu, Y. Xu, Y. Shi, Exact solutions of Gardner equations through tanh coth method, Appl. Math., 7 (2016), 2374-2381.
  • [15] B. Ghanbari, D. Baleanu, New solutions of Gardner’s equation using two analytical methods, Front. In Phys., 7 (2015), 1-15.
  • [16] M. Bokaeeyan, A. Ankiewicz, N. Akhmediev, Bright and dark rogue internal waves, the Gardner equation approach, Phys. Rev. E, 99 (2019), 062224-1-7.
  • [17] A. Ankiewicz, M. Bokaeeyan, Integral relations for rogue wave formations of Gardner equation, Nonlinear Dyn, 99 (2020), 2939-2944.
  • [18] P. Gaillard, The mKdV equation and multi-parameters rational solutions, Wave Motion, 100, (2021), 102667-1-9.
There are 18 citations in total.

Details

Primary Language English
Subjects Partial Differential Equations
Journal Section Articles
Authors

Pierre Gaillard 0000-0002-7073-8284

Early Pub Date July 16, 2024
Publication Date August 31, 2024
Submission Date January 27, 2024
Acceptance Date June 23, 2024
Published in Issue Year 2024

Cite

APA Gaillard, P. (2024). N-order solutions to the Gardner equation in terms of Wronskians. Journal of Mathematical Sciences and Modelling, 7(2), 75-81. https://doi.org/10.33187/jmsm.1426590
AMA Gaillard P. N-order solutions to the Gardner equation in terms of Wronskians. Journal of Mathematical Sciences and Modelling. August 2024;7(2):75-81. doi:10.33187/jmsm.1426590
Chicago Gaillard, Pierre. “N-Order Solutions to the Gardner Equation in Terms of Wronskians”. Journal of Mathematical Sciences and Modelling 7, no. 2 (August 2024): 75-81. https://doi.org/10.33187/jmsm.1426590.
EndNote Gaillard P (August 1, 2024) N-order solutions to the Gardner equation in terms of Wronskians. Journal of Mathematical Sciences and Modelling 7 2 75–81.
IEEE P. Gaillard, “N-order solutions to the Gardner equation in terms of Wronskians”, Journal of Mathematical Sciences and Modelling, vol. 7, no. 2, pp. 75–81, 2024, doi: 10.33187/jmsm.1426590.
ISNAD Gaillard, Pierre. “N-Order Solutions to the Gardner Equation in Terms of Wronskians”. Journal of Mathematical Sciences and Modelling 7/2 (August 2024), 75-81. https://doi.org/10.33187/jmsm.1426590.
JAMA Gaillard P. N-order solutions to the Gardner equation in terms of Wronskians. Journal of Mathematical Sciences and Modelling. 2024;7:75–81.
MLA Gaillard, Pierre. “N-Order Solutions to the Gardner Equation in Terms of Wronskians”. Journal of Mathematical Sciences and Modelling, vol. 7, no. 2, 2024, pp. 75-81, doi:10.33187/jmsm.1426590.
Vancouver Gaillard P. N-order solutions to the Gardner equation in terms of Wronskians. Journal of Mathematical Sciences and Modelling. 2024;7(2):75-81.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.