Research Article
BibTex RIS Cite
Year 2018, , 202 - 205, 30.12.2018
https://doi.org/10.33187/jmsm.460001

Abstract

References

  • [1] M. Toda, Theory of Nonlinear Lattices, Springer-Verlag, New-York, 1989.
  • [2] K. Kajiwara,J. Satsuma, The conserved quantities and symmetries of the two-dimensional Toda lattice hierarchy, J. Math. Phys., 32 (1991), 506—514.
  • [3] J. J. Mohan, G. V. S. R. Deekshitulu, Fractional order difference equations, Int. J. Differ. Equ., 2012(2012), Article ID 780619, 11 pages, https://doi.org/10.1155/2012/780619.
  • [4] M. Cui, Compact finite difference method for the fractional diffusion equation J. Comput. Phys., 228 (2009), 7792–7804.
  • [5] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [6] C. Li, F. Zeng, Numerical Methods for Fractional Calculus CRC Press, Boca Raton, 2015.

Finite Difference Solution to the Space-Time Fractional Partial Differential-Difference Toda Lattice Equation

Year 2018, , 202 - 205, 30.12.2018
https://doi.org/10.33187/jmsm.460001

Abstract

This paper deals with the numerical solution of space-time fractional partial differential-difference Toda lattice equation $\frac{\partial^{2\alpha} u_n}{\partial x^{\alpha}\partial t^{\alpha}}=(1+\frac{\partial^\alpha u_n}{\partial t^{\alpha}})(u_{n-1}-2u_n+u_{n+1})$, $\alpha \in (0,1)$. The finite differences method (FD-method) is used for numerical solution of this problem. According to the method, we approximate the unknown values $u_n$ of the desired function by finite differences approximation. As an application we demonstrate the capabilities of this method for identification of various values of order of fractional derivative $\alpha$. Numerical results show that the proposed version of FD-method allows to obtain all data from the initial and boundary conditions with enough high accuracy.

References

  • [1] M. Toda, Theory of Nonlinear Lattices, Springer-Verlag, New-York, 1989.
  • [2] K. Kajiwara,J. Satsuma, The conserved quantities and symmetries of the two-dimensional Toda lattice hierarchy, J. Math. Phys., 32 (1991), 506—514.
  • [3] J. J. Mohan, G. V. S. R. Deekshitulu, Fractional order difference equations, Int. J. Differ. Equ., 2012(2012), Article ID 780619, 11 pages, https://doi.org/10.1155/2012/780619.
  • [4] M. Cui, Compact finite difference method for the fractional diffusion equation J. Comput. Phys., 228 (2009), 7792–7804.
  • [5] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [6] C. Li, F. Zeng, Numerical Methods for Fractional Calculus CRC Press, Boca Raton, 2015.
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Refet Polat 0000-0001-9761-8787

Publication Date December 30, 2018
Submission Date September 14, 2018
Acceptance Date November 13, 2018
Published in Issue Year 2018

Cite

APA Polat, R. (2018). Finite Difference Solution to the Space-Time Fractional Partial Differential-Difference Toda Lattice Equation. Journal of Mathematical Sciences and Modelling, 1(3), 202-205. https://doi.org/10.33187/jmsm.460001
AMA Polat R. Finite Difference Solution to the Space-Time Fractional Partial Differential-Difference Toda Lattice Equation. Journal of Mathematical Sciences and Modelling. December 2018;1(3):202-205. doi:10.33187/jmsm.460001
Chicago Polat, Refet. “Finite Difference Solution to the Space-Time Fractional Partial Differential-Difference Toda Lattice Equation”. Journal of Mathematical Sciences and Modelling 1, no. 3 (December 2018): 202-5. https://doi.org/10.33187/jmsm.460001.
EndNote Polat R (December 1, 2018) Finite Difference Solution to the Space-Time Fractional Partial Differential-Difference Toda Lattice Equation. Journal of Mathematical Sciences and Modelling 1 3 202–205.
IEEE R. Polat, “Finite Difference Solution to the Space-Time Fractional Partial Differential-Difference Toda Lattice Equation”, Journal of Mathematical Sciences and Modelling, vol. 1, no. 3, pp. 202–205, 2018, doi: 10.33187/jmsm.460001.
ISNAD Polat, Refet. “Finite Difference Solution to the Space-Time Fractional Partial Differential-Difference Toda Lattice Equation”. Journal of Mathematical Sciences and Modelling 1/3 (December 2018), 202-205. https://doi.org/10.33187/jmsm.460001.
JAMA Polat R. Finite Difference Solution to the Space-Time Fractional Partial Differential-Difference Toda Lattice Equation. Journal of Mathematical Sciences and Modelling. 2018;1:202–205.
MLA Polat, Refet. “Finite Difference Solution to the Space-Time Fractional Partial Differential-Difference Toda Lattice Equation”. Journal of Mathematical Sciences and Modelling, vol. 1, no. 3, 2018, pp. 202-5, doi:10.33187/jmsm.460001.
Vancouver Polat R. Finite Difference Solution to the Space-Time Fractional Partial Differential-Difference Toda Lattice Equation. Journal of Mathematical Sciences and Modelling. 2018;1(3):202-5.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.