Research Article
BibTex RIS Cite

2-Absorbing Semiprimary Fuzzy Ideal of Commutative Rings

Year 2019, , 193 - 197, 26.12.2019
https://doi.org/10.33187/jmsm.588093

Abstract

In this work, we introduce the notion of 2-absorbing semiprimary fuzzy  ideal which is a generalization of semiprimary fuzzy ideal. Let $ R $ be a ring. Then the nonconstant fuzzy ideal $ \mu $ is called a 2-absorbing semiprimary fuzzy ideal if  $ \sqrt{\mu } $ is a 2-absorbing fuzzy ideal of $ R $. Furthermore, we give some fundamental results concerning these notions.

References

  • [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.
  • [2] W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets Syst., 8 (1982), 133-139.
  • [3] T. K. Mukherjee, M.K. Sen, Prime fuzzy ideals in rings, Fuzzy Sets Syst. 32 (1989), 337-341.
  • [4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(3) (2007), 417-429.
  • [5] A. Badawi, U. Tekir, E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Austral. Math. Soc., 51(4) (2014), 1163-1173.
  • [6] T. K. Mukherjee, M. K. Sen, Primary fuzzy ideals and radical of fuzzy ideals, Fuzzy Sets Syst., 56 (1993), 97-101.
  • [7] D. S¨onmez, G. Yes¸ilot, S. Onar, B. A. Ersoy, B. Davvaz, On 2-absorbing primary fuzzy ideals of commutative rings, Math. Probl. Eng., (2017), doi:10.1155/2017/5485839.
  • [8] V. N. Dixit, R. Kumar, N. Ajmal. Fuzzy ideals and fuzzy prime ideals of a ring, Fuzzy Sets Syst., 44 (1991), 127-138.
  • [9] L. I. Sidky, S. A. Khatab, Nil radical of fuzzy ideal, Fuzzy Sets Syst., 47 (1992), 117-120.
  • [10] S. Koc, R. N. Uregen, U. Tekir. On 2-absorbing quasi primary submodules, Filomat, 31 (2017), 2943-2950.
  • [11] F. Callialp, E. Yetkin, U. Tekir, On 2-absorbing primary and weakly 2-absorbing primary elements in multiplicative lattices, Ital. J. Pure Appl. Math., 34 (2015), 263-276 .
  • [12] B. A. Ersoy, A generalization of cartesian product of fuzzy subgroups and ideals, J. Appl. Sci., 3 (2003), 100-102.
Year 2019, , 193 - 197, 26.12.2019
https://doi.org/10.33187/jmsm.588093

Abstract

References

  • [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.
  • [2] W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets Syst., 8 (1982), 133-139.
  • [3] T. K. Mukherjee, M.K. Sen, Prime fuzzy ideals in rings, Fuzzy Sets Syst. 32 (1989), 337-341.
  • [4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(3) (2007), 417-429.
  • [5] A. Badawi, U. Tekir, E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Austral. Math. Soc., 51(4) (2014), 1163-1173.
  • [6] T. K. Mukherjee, M. K. Sen, Primary fuzzy ideals and radical of fuzzy ideals, Fuzzy Sets Syst., 56 (1993), 97-101.
  • [7] D. S¨onmez, G. Yes¸ilot, S. Onar, B. A. Ersoy, B. Davvaz, On 2-absorbing primary fuzzy ideals of commutative rings, Math. Probl. Eng., (2017), doi:10.1155/2017/5485839.
  • [8] V. N. Dixit, R. Kumar, N. Ajmal. Fuzzy ideals and fuzzy prime ideals of a ring, Fuzzy Sets Syst., 44 (1991), 127-138.
  • [9] L. I. Sidky, S. A. Khatab, Nil radical of fuzzy ideal, Fuzzy Sets Syst., 47 (1992), 117-120.
  • [10] S. Koc, R. N. Uregen, U. Tekir. On 2-absorbing quasi primary submodules, Filomat, 31 (2017), 2943-2950.
  • [11] F. Callialp, E. Yetkin, U. Tekir, On 2-absorbing primary and weakly 2-absorbing primary elements in multiplicative lattices, Ital. J. Pure Appl. Math., 34 (2015), 263-276 .
  • [12] B. A. Ersoy, A generalization of cartesian product of fuzzy subgroups and ideals, J. Appl. Sci., 3 (2003), 100-102.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Deniz Sönmez 0000-0003-3186-4082

Gürsel Yeşilot 0000-0002-7279-9275

Serkan Onar 0000-0003-3084-7694

Bayram Ali Ersoy 0000-0002-8307-9644

Publication Date December 26, 2019
Submission Date July 7, 2019
Acceptance Date September 27, 2019
Published in Issue Year 2019

Cite

APA Sönmez, D., Yeşilot, G., Onar, S., Ersoy, B. A. (2019). 2-Absorbing Semiprimary Fuzzy Ideal of Commutative Rings. Journal of Mathematical Sciences and Modelling, 2(3), 193-197. https://doi.org/10.33187/jmsm.588093
AMA Sönmez D, Yeşilot G, Onar S, Ersoy BA. 2-Absorbing Semiprimary Fuzzy Ideal of Commutative Rings. Journal of Mathematical Sciences and Modelling. December 2019;2(3):193-197. doi:10.33187/jmsm.588093
Chicago Sönmez, Deniz, Gürsel Yeşilot, Serkan Onar, and Bayram Ali Ersoy. “2-Absorbing Semiprimary Fuzzy Ideal of Commutative Rings”. Journal of Mathematical Sciences and Modelling 2, no. 3 (December 2019): 193-97. https://doi.org/10.33187/jmsm.588093.
EndNote Sönmez D, Yeşilot G, Onar S, Ersoy BA (December 1, 2019) 2-Absorbing Semiprimary Fuzzy Ideal of Commutative Rings. Journal of Mathematical Sciences and Modelling 2 3 193–197.
IEEE D. Sönmez, G. Yeşilot, S. Onar, and B. A. Ersoy, “2-Absorbing Semiprimary Fuzzy Ideal of Commutative Rings”, Journal of Mathematical Sciences and Modelling, vol. 2, no. 3, pp. 193–197, 2019, doi: 10.33187/jmsm.588093.
ISNAD Sönmez, Deniz et al. “2-Absorbing Semiprimary Fuzzy Ideal of Commutative Rings”. Journal of Mathematical Sciences and Modelling 2/3 (December 2019), 193-197. https://doi.org/10.33187/jmsm.588093.
JAMA Sönmez D, Yeşilot G, Onar S, Ersoy BA. 2-Absorbing Semiprimary Fuzzy Ideal of Commutative Rings. Journal of Mathematical Sciences and Modelling. 2019;2:193–197.
MLA Sönmez, Deniz et al. “2-Absorbing Semiprimary Fuzzy Ideal of Commutative Rings”. Journal of Mathematical Sciences and Modelling, vol. 2, no. 3, 2019, pp. 193-7, doi:10.33187/jmsm.588093.
Vancouver Sönmez D, Yeşilot G, Onar S, Ersoy BA. 2-Absorbing Semiprimary Fuzzy Ideal of Commutative Rings. Journal of Mathematical Sciences and Modelling. 2019;2(3):193-7.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.