Research Article
BibTex RIS Cite

Upper Bound of Difference Operator on Some Matrix Domains

Year 2021, Volume: 4 Issue: 1, 19 - 24, 30.04.2021
https://doi.org/10.33187/jmsm.828002

Abstract

In this study, we investigate the norm of difference operator on some sequence spaces such as Hilbert and Cesaro matrix domains. Therefore the present study is a complement for those results obtained in [1].

References

  • [1] H. Roopaei, D. Foroutannia, The norm of backward difference operator Dn on certain sequence spaces, Oper. Matrices, 12(3) (2018), 867-880.
  • [2] H. Roopaei, Norm of Hilbert operator on sequence spaces, J. Inequal. Appl., 2020(117), (2020).
  • [3] H. Kizmaz, On certain sequence spaces I, Canad. Math. Bull., 25(2) (1981), 169-176.
  • [4] B. Altay, F. Basar, The fine spectrum and the matrix domain of the difference operator D on the sequence space `p, (0 < p < 1), Commun. Math. Anal., 2(2) (2007), 1–11.
  • [5] F. Basar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(1) (2003), 136–147.
  • [6] C. P. Chen, D. C. Luor, Z. y. Ou, Extensions of Hardy inequality, J. Math. Anal. Appl., 273 (2002), 160–171.
  • [7] B. Altay, F. Basar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., 336(1) (2007), 632–645.
  • [8] E. E. Kara, M. Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear Multilinear Algebra, 64(11) (2016), 2208-2223.
  • [9] F. Basar, Domain of the composition of some triangles in the space of p-summable sequences, AIP Conference Proceedings, 1611 (2014), 348–356.
  • [10] H. Roopaei, F Basar, On the spaces of Cesaro absolutely p-summable, null, and convergent sequences, Math. Methods Appl. Sci., 44(5) (2021), 3670-3685.
  • [11] H. Roopaei, T. Yaying, Quasi-Cesaro matrix and associated sequence spaces, Turk. J. Math., 45(1) (2021), 153-166.
  • [12] H. Roopaei, M. ˙Ilkhan, Fractional Ces`aro matrix and its associated sequence space, Concr. Oper., 8(1), (2021), 24-39.
  • [13] M. ˙Ilkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
  • [14] F. Bas¸ar, Summability Theory and Its Applications, Bentham Science Publishers, Istanbul, 2012.
  • [15] H. Roopaei, D. Foroutannia, The norm of matrix operators on Ces`aro weighted sequence space, Linear Multilinear Algebra, 67(1) (2019), 175-185.
  • [16] H. Roopaei, D. Foroutannia, The norms of certain matrix operators from `p spaces into `p(Dn) spaces, Linear Multilinear Algebra, 67(4) (2019), 767-776.
  • [17] H. Roopaei, Norms of summability and Hausdorff mean matrices on difference sequence spaces, Math. Inequal. Appl., 22(3) (2019), 983-987.
  • [18] H. Roopaei, A study on Copson operator and its associated sequence spaces, J. Inequal. Appl., 2020(120) (2020).
  • [19] H. Roopaei, A study on Copson operator and its associated sequence spaces II, J. Inequal. Appl., 2020(239) (2020).
  • [20] H. Roopaei, Bounds of operators on the Hilbert sequence space, Concr. Oper., 7 (2020), 155-165.
  • [21] H. Roopaei, Binomial operator as a Hausdorff operator of the Euler type, Constr. Math. Anal., 3(4) (2020), 165-177.
  • [22] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, 2nd edition, Cambridge University Press, Cambridge, 2001.
  • [23] Ng P-N, Lee P-Y, Cesaro sequence spaces of non-absolute type, Comment. Math. Prace Mat., 20(2) (1978), 429-433.
  • [24] M. Sengonul, F. Basar, Cesaro sequence spaces of non-absolute type which include the spaces c0 and c, Soochow J. Math., 31(1) (2005), 107-119.
  • [25] H. Roopaei, D. Foroutannia, M. Ilkhan, E. E. Kara, Cesaro Spaces and Norm of Operators on These Matrix Domains, Mediterr. J. Math., 17, 121 (2020).
  • [26] G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc., 576 (1996).

Year 2021, Volume: 4 Issue: 1, 19 - 24, 30.04.2021
https://doi.org/10.33187/jmsm.828002

Abstract

References

  • [1] H. Roopaei, D. Foroutannia, The norm of backward difference operator Dn on certain sequence spaces, Oper. Matrices, 12(3) (2018), 867-880.
  • [2] H. Roopaei, Norm of Hilbert operator on sequence spaces, J. Inequal. Appl., 2020(117), (2020).
  • [3] H. Kizmaz, On certain sequence spaces I, Canad. Math. Bull., 25(2) (1981), 169-176.
  • [4] B. Altay, F. Basar, The fine spectrum and the matrix domain of the difference operator D on the sequence space `p, (0 < p < 1), Commun. Math. Anal., 2(2) (2007), 1–11.
  • [5] F. Basar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(1) (2003), 136–147.
  • [6] C. P. Chen, D. C. Luor, Z. y. Ou, Extensions of Hardy inequality, J. Math. Anal. Appl., 273 (2002), 160–171.
  • [7] B. Altay, F. Basar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., 336(1) (2007), 632–645.
  • [8] E. E. Kara, M. Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear Multilinear Algebra, 64(11) (2016), 2208-2223.
  • [9] F. Basar, Domain of the composition of some triangles in the space of p-summable sequences, AIP Conference Proceedings, 1611 (2014), 348–356.
  • [10] H. Roopaei, F Basar, On the spaces of Cesaro absolutely p-summable, null, and convergent sequences, Math. Methods Appl. Sci., 44(5) (2021), 3670-3685.
  • [11] H. Roopaei, T. Yaying, Quasi-Cesaro matrix and associated sequence spaces, Turk. J. Math., 45(1) (2021), 153-166.
  • [12] H. Roopaei, M. ˙Ilkhan, Fractional Ces`aro matrix and its associated sequence space, Concr. Oper., 8(1), (2021), 24-39.
  • [13] M. ˙Ilkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
  • [14] F. Bas¸ar, Summability Theory and Its Applications, Bentham Science Publishers, Istanbul, 2012.
  • [15] H. Roopaei, D. Foroutannia, The norm of matrix operators on Ces`aro weighted sequence space, Linear Multilinear Algebra, 67(1) (2019), 175-185.
  • [16] H. Roopaei, D. Foroutannia, The norms of certain matrix operators from `p spaces into `p(Dn) spaces, Linear Multilinear Algebra, 67(4) (2019), 767-776.
  • [17] H. Roopaei, Norms of summability and Hausdorff mean matrices on difference sequence spaces, Math. Inequal. Appl., 22(3) (2019), 983-987.
  • [18] H. Roopaei, A study on Copson operator and its associated sequence spaces, J. Inequal. Appl., 2020(120) (2020).
  • [19] H. Roopaei, A study on Copson operator and its associated sequence spaces II, J. Inequal. Appl., 2020(239) (2020).
  • [20] H. Roopaei, Bounds of operators on the Hilbert sequence space, Concr. Oper., 7 (2020), 155-165.
  • [21] H. Roopaei, Binomial operator as a Hausdorff operator of the Euler type, Constr. Math. Anal., 3(4) (2020), 165-177.
  • [22] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, 2nd edition, Cambridge University Press, Cambridge, 2001.
  • [23] Ng P-N, Lee P-Y, Cesaro sequence spaces of non-absolute type, Comment. Math. Prace Mat., 20(2) (1978), 429-433.
  • [24] M. Sengonul, F. Basar, Cesaro sequence spaces of non-absolute type which include the spaces c0 and c, Soochow J. Math., 31(1) (2005), 107-119.
  • [25] H. Roopaei, D. Foroutannia, M. Ilkhan, E. E. Kara, Cesaro Spaces and Norm of Operators on These Matrix Domains, Mediterr. J. Math., 17, 121 (2020).
  • [26] G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc., 576 (1996).
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Lotfollah Karimi 0000-0002-4414-524X

Maryam Sinaei 0000-0002-4414-524X

Submission Date November 18, 2020
Acceptance Date April 6, 2021
Publication Date April 30, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Karimi, L., & Sinaei, M. (2021). Upper Bound of Difference Operator on Some Matrix Domains. Journal of Mathematical Sciences and Modelling, 4(1), 19-24. https://doi.org/10.33187/jmsm.828002
AMA Karimi L, Sinaei M. Upper Bound of Difference Operator on Some Matrix Domains. Journal of Mathematical Sciences and Modelling. April 2021;4(1):19-24. doi:10.33187/jmsm.828002
Chicago Karimi, Lotfollah, and Maryam Sinaei. “Upper Bound of Difference Operator on Some Matrix Domains”. Journal of Mathematical Sciences and Modelling 4, no. 1 (April 2021): 19-24. https://doi.org/10.33187/jmsm.828002.
EndNote Karimi L, Sinaei M (April 1, 2021) Upper Bound of Difference Operator on Some Matrix Domains. Journal of Mathematical Sciences and Modelling 4 1 19–24.
IEEE L. Karimi and M. Sinaei, “Upper Bound of Difference Operator on Some Matrix Domains”, Journal of Mathematical Sciences and Modelling, vol. 4, no. 1, pp. 19–24, 2021, doi: 10.33187/jmsm.828002.
ISNAD Karimi, Lotfollah - Sinaei, Maryam. “Upper Bound of Difference Operator on Some Matrix Domains”. Journal of Mathematical Sciences and Modelling 4/1 (April2021), 19-24. https://doi.org/10.33187/jmsm.828002.
JAMA Karimi L, Sinaei M. Upper Bound of Difference Operator on Some Matrix Domains. Journal of Mathematical Sciences and Modelling. 2021;4:19–24.
MLA Karimi, Lotfollah and Maryam Sinaei. “Upper Bound of Difference Operator on Some Matrix Domains”. Journal of Mathematical Sciences and Modelling, vol. 4, no. 1, 2021, pp. 19-24, doi:10.33187/jmsm.828002.
Vancouver Karimi L, Sinaei M. Upper Bound of Difference Operator on Some Matrix Domains. Journal of Mathematical Sciences and Modelling. 2021;4(1):19-24.

29237    Journal of Mathematical Sciences and Modelling 29238

                  29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.