Research Article
BibTex RIS Cite
Year 2021, , 89 - 102, 31.08.2021
https://doi.org/10.33187/jmsm.929981

Abstract

References

  • [1] Mickens RE. Difference Equations. Van Nostrand Reinhold Comp: New York, 1987.
  • [2] Mackey MC, Glass L. Oscillation and chaos in physiological control system. Science 1977; 197:287–289.
  • [3] Kulenovic MRS, Ladas G. Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures. Chapman & Hall / CRC Press, 2001.
  • [4] V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [5] R. Agarwal, Difference equations and inequalities. Theory, methods and applications, Marcel Dekker Inc., New York, 1992.
  • [6] H. Chen and H. Wang, Global attractivity of the difference equation $x_{n+1}=\dfrac{x_{n}+\alpha x_{n-1}}{\beta +x_{n}}$, Appl. Math. Comp., 181 (2006) 1431–1438.
  • [7] C. Cinar, On the positive solutions of the difference equation $ x_{n+1}=\dfrac{ax_{n-1}}{1+bx_{n}x_{n-1}},$, Appl. Math. Comp., 156 (2004) 587-590.
  • [8] S. E. Das and M.Bayram, On a System of Rational Difference Equations, World Applied Sciences Journal 10(11) (2010), 1306-1312.
  • [9] Q. Din, and E. M. Elsayed, Stability analysis of a discrete ecological model, Computational Ecology and Software 4 (2) (2014), 89–103.
  • [10] Beverton RJ, Holt SJ. On the Dynamics of Exploited Fish Populations, Vol. 19. Fish Invest.: London, 1957.
  • [11] DeVault R, Dial G, Kocic V. L, Ladas G. Global behavior of solutions of $x_{n+1}=ax_{n}+f(x_{n},\ x_{n-1})$. Journal of Difference Equations and Applications 1997, 3(3-4), 311–330.
  • [12] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equations$x_{n+1}=\dfrac{\alpha x_{n-k}}{\beta +\gamma \prod_{i=0}^{k}x_{n-i}},$, J. Conc. Appl. Math., 5(2) (2007), 101-113.
  • [13] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Qualitative behavior of higher order difference equation, Soochow Journal of Mathematics, 33 (4) (2007), 861-873.
  • [14] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the Difference Equation $x_{n+1}=\frac{a_{0}x_{n}+a_{1}x_{n-1}+...+a_{k}x_{n-k}}{% b_{0}x_{n}+b_{1}x_{n-1}+...+b_{k}x_{n-k}}$, Mathematica Bohemica, 133 (2) (2008), 133-147.
  • [15] E.M. Elsayed, Qualitative behaviour of difference equation of order two Mathematical and Computer Modelling 50 (2009) 1130 1141.
  • [16] Elabbasy and E. M. Elsayed, On the difference equation, $x_{n+1}=\frac{.\alpha x_{n-l}+\beta x_{n-k}}{Ax_{n-l}+Bx_{n-k}},$, Acta Mathematica Vietnamica, 33 (2008), 85–94.

Dynamics and Expression of Solution of a Sixth Order Difference Equation

Year 2021, , 89 - 102, 31.08.2021
https://doi.org/10.33187/jmsm.929981

Abstract

This paper deals with the solution behavior and periodic nature of the solutions of the difference equation $$ s_{n+1}=\alpha s_{n}+\dfrac{\beta s_{n}s_{n-4}}{\gamma s_{n-4}+\delta s_{n-5} },\;\;\;n=0,1,... $$ {\Large \noindent }where the initial conditions $s_{-5},\ s_{-4},\ s_{-3},\ s_{-2},\ s_{-1},\ s_{0}$ are arbitrary positive real numbers and $\alpha ,\ \beta ,\ \gamma ,\ \delta \ $are positive constants. Also we obtain the closed form of the solutions of some special cases of this equation.

References

  • [1] Mickens RE. Difference Equations. Van Nostrand Reinhold Comp: New York, 1987.
  • [2] Mackey MC, Glass L. Oscillation and chaos in physiological control system. Science 1977; 197:287–289.
  • [3] Kulenovic MRS, Ladas G. Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures. Chapman & Hall / CRC Press, 2001.
  • [4] V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [5] R. Agarwal, Difference equations and inequalities. Theory, methods and applications, Marcel Dekker Inc., New York, 1992.
  • [6] H. Chen and H. Wang, Global attractivity of the difference equation $x_{n+1}=\dfrac{x_{n}+\alpha x_{n-1}}{\beta +x_{n}}$, Appl. Math. Comp., 181 (2006) 1431–1438.
  • [7] C. Cinar, On the positive solutions of the difference equation $ x_{n+1}=\dfrac{ax_{n-1}}{1+bx_{n}x_{n-1}},$, Appl. Math. Comp., 156 (2004) 587-590.
  • [8] S. E. Das and M.Bayram, On a System of Rational Difference Equations, World Applied Sciences Journal 10(11) (2010), 1306-1312.
  • [9] Q. Din, and E. M. Elsayed, Stability analysis of a discrete ecological model, Computational Ecology and Software 4 (2) (2014), 89–103.
  • [10] Beverton RJ, Holt SJ. On the Dynamics of Exploited Fish Populations, Vol. 19. Fish Invest.: London, 1957.
  • [11] DeVault R, Dial G, Kocic V. L, Ladas G. Global behavior of solutions of $x_{n+1}=ax_{n}+f(x_{n},\ x_{n-1})$. Journal of Difference Equations and Applications 1997, 3(3-4), 311–330.
  • [12] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equations$x_{n+1}=\dfrac{\alpha x_{n-k}}{\beta +\gamma \prod_{i=0}^{k}x_{n-i}},$, J. Conc. Appl. Math., 5(2) (2007), 101-113.
  • [13] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Qualitative behavior of higher order difference equation, Soochow Journal of Mathematics, 33 (4) (2007), 861-873.
  • [14] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the Difference Equation $x_{n+1}=\frac{a_{0}x_{n}+a_{1}x_{n-1}+...+a_{k}x_{n-k}}{% b_{0}x_{n}+b_{1}x_{n-1}+...+b_{k}x_{n-k}}$, Mathematica Bohemica, 133 (2) (2008), 133-147.
  • [15] E.M. Elsayed, Qualitative behaviour of difference equation of order two Mathematical and Computer Modelling 50 (2009) 1130 1141.
  • [16] Elabbasy and E. M. Elsayed, On the difference equation, $x_{n+1}=\frac{.\alpha x_{n-l}+\beta x_{n-k}}{Ax_{n-l}+Bx_{n-k}},$, Acta Mathematica Vietnamica, 33 (2008), 85–94.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Abdul Khaliq 0000-0001-8802-9200

Publication Date August 31, 2021
Submission Date April 29, 2021
Acceptance Date September 10, 2021
Published in Issue Year 2021

Cite

APA Khaliq, A. (2021). Dynamics and Expression of Solution of a Sixth Order Difference Equation. Journal of Mathematical Sciences and Modelling, 4(2), 89-102. https://doi.org/10.33187/jmsm.929981
AMA Khaliq A. Dynamics and Expression of Solution of a Sixth Order Difference Equation. Journal of Mathematical Sciences and Modelling. August 2021;4(2):89-102. doi:10.33187/jmsm.929981
Chicago Khaliq, Abdul. “Dynamics and Expression of Solution of a Sixth Order Difference Equation”. Journal of Mathematical Sciences and Modelling 4, no. 2 (August 2021): 89-102. https://doi.org/10.33187/jmsm.929981.
EndNote Khaliq A (August 1, 2021) Dynamics and Expression of Solution of a Sixth Order Difference Equation. Journal of Mathematical Sciences and Modelling 4 2 89–102.
IEEE A. Khaliq, “Dynamics and Expression of Solution of a Sixth Order Difference Equation”, Journal of Mathematical Sciences and Modelling, vol. 4, no. 2, pp. 89–102, 2021, doi: 10.33187/jmsm.929981.
ISNAD Khaliq, Abdul. “Dynamics and Expression of Solution of a Sixth Order Difference Equation”. Journal of Mathematical Sciences and Modelling 4/2 (August 2021), 89-102. https://doi.org/10.33187/jmsm.929981.
JAMA Khaliq A. Dynamics and Expression of Solution of a Sixth Order Difference Equation. Journal of Mathematical Sciences and Modelling. 2021;4:89–102.
MLA Khaliq, Abdul. “Dynamics and Expression of Solution of a Sixth Order Difference Equation”. Journal of Mathematical Sciences and Modelling, vol. 4, no. 2, 2021, pp. 89-102, doi:10.33187/jmsm.929981.
Vancouver Khaliq A. Dynamics and Expression of Solution of a Sixth Order Difference Equation. Journal of Mathematical Sciences and Modelling. 2021;4(2):89-102.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.