Research Article
BibTex RIS Cite
Year 2021, , 51 - 55, 31.08.2021
https://doi.org/10.33187/jmsm.931258

Abstract

References

  • [1] N. Bruin, M. Stoll, The Mordell-Weil sieve : proving the nonexistence of Rational points on curves, LMS J. Comp. Math., 13 (2010), 272 -306.
  • [2] R. F. Coleman, Effective Chabauty Duke Math. J. 52(3) (1985), 765-770.
  • [3] E. F. Schaefer, Computing a Selmer group of a Jacobian using functions on the curve, Mathematische Annalen, 310 (1998), 447–471.
  • [4] M. J. Klassen, E. F. Schaefer, Arithmetic and geometry of the curve x4 = y3 +1, Acta Arithmetica LXXIV.3 (1996) 241-257.
  • [5] M. Fall, O. Sall, Ponts alg´ebriques de petit degr´e sur la courbe d’´equation affine y2 = x5 +1, Afr. Mat. 29 (2018) 1151-1157.
  • [6] O. Sall, Points alg´ebriques sur certains quotients de courbes de Fermat, C. R. Acad. Sci. Paris S´er I 336 (2003) 117-120.
  • [7] S. Siksek, M. Stoll, Partial descent on hyper elliptic curves and the generalized Fermat equation x3 +y4 +z5 = 0, Bulletin of the LMS 44 (2012) 151 -166

Parametrization of Algebraic Points of Low Degrees on the Schaeffer Curve

Year 2021, , 51 - 55, 31.08.2021
https://doi.org/10.33187/jmsm.931258

Abstract

In this paper, we give a parametrization of algebraic points of degree at most $4$ over $\mathbb{Q}$ on the schaeffer curve $\mathcal{C}$ of affine equation : $ y^{2}=x^{5}+1 $. The result extends our previous result which describes in [5] ( Afr. Mat 29:1151-1157, 2018) the set of algebraic points of degree at most $3$ over $\mathbb{Q}$ on this curve.

References

  • [1] N. Bruin, M. Stoll, The Mordell-Weil sieve : proving the nonexistence of Rational points on curves, LMS J. Comp. Math., 13 (2010), 272 -306.
  • [2] R. F. Coleman, Effective Chabauty Duke Math. J. 52(3) (1985), 765-770.
  • [3] E. F. Schaefer, Computing a Selmer group of a Jacobian using functions on the curve, Mathematische Annalen, 310 (1998), 447–471.
  • [4] M. J. Klassen, E. F. Schaefer, Arithmetic and geometry of the curve x4 = y3 +1, Acta Arithmetica LXXIV.3 (1996) 241-257.
  • [5] M. Fall, O. Sall, Ponts alg´ebriques de petit degr´e sur la courbe d’´equation affine y2 = x5 +1, Afr. Mat. 29 (2018) 1151-1157.
  • [6] O. Sall, Points alg´ebriques sur certains quotients de courbes de Fermat, C. R. Acad. Sci. Paris S´er I 336 (2003) 117-120.
  • [7] S. Siksek, M. Stoll, Partial descent on hyper elliptic curves and the generalized Fermat equation x3 +y4 +z5 = 0, Bulletin of the LMS 44 (2012) 151 -166
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Moussa Fall 0000-0003-3880-7603

Publication Date August 31, 2021
Submission Date May 2, 2021
Acceptance Date August 19, 2021
Published in Issue Year 2021

Cite

APA Fall, M. (2021). Parametrization of Algebraic Points of Low Degrees on the Schaeffer Curve. Journal of Mathematical Sciences and Modelling, 4(2), 51-55. https://doi.org/10.33187/jmsm.931258
AMA Fall M. Parametrization of Algebraic Points of Low Degrees on the Schaeffer Curve. Journal of Mathematical Sciences and Modelling. August 2021;4(2):51-55. doi:10.33187/jmsm.931258
Chicago Fall, Moussa. “Parametrization of Algebraic Points of Low Degrees on the Schaeffer Curve”. Journal of Mathematical Sciences and Modelling 4, no. 2 (August 2021): 51-55. https://doi.org/10.33187/jmsm.931258.
EndNote Fall M (August 1, 2021) Parametrization of Algebraic Points of Low Degrees on the Schaeffer Curve. Journal of Mathematical Sciences and Modelling 4 2 51–55.
IEEE M. Fall, “Parametrization of Algebraic Points of Low Degrees on the Schaeffer Curve”, Journal of Mathematical Sciences and Modelling, vol. 4, no. 2, pp. 51–55, 2021, doi: 10.33187/jmsm.931258.
ISNAD Fall, Moussa. “Parametrization of Algebraic Points of Low Degrees on the Schaeffer Curve”. Journal of Mathematical Sciences and Modelling 4/2 (August 2021), 51-55. https://doi.org/10.33187/jmsm.931258.
JAMA Fall M. Parametrization of Algebraic Points of Low Degrees on the Schaeffer Curve. Journal of Mathematical Sciences and Modelling. 2021;4:51–55.
MLA Fall, Moussa. “Parametrization of Algebraic Points of Low Degrees on the Schaeffer Curve”. Journal of Mathematical Sciences and Modelling, vol. 4, no. 2, 2021, pp. 51-55, doi:10.33187/jmsm.931258.
Vancouver Fall M. Parametrization of Algebraic Points of Low Degrees on the Schaeffer Curve. Journal of Mathematical Sciences and Modelling. 2021;4(2):51-5.

Cited By

Annales Universitatis Paedagogicae Cracoviensis
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
https://doi.org/10.2478/aupcsm-2023-0003

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.