Research Article
BibTex RIS Cite
Year 2018, Volume: 1 Issue: 2, 73 - 79, 30.09.2018
https://doi.org/10.33187/jmsm.434543

Abstract

References

  • [1] P. Barry, Triangle geometry and Jacobsthal numbers, Irish Math. Soc. Bulletin 51 (2003), 45–57.
  • [2] G. Cerda-Morales, Identities for Third Order Jacobsthal Quaternions, Adv. Appl. Clifford Algebras 27(2) (2017), 1043–1053.
  • [3] C. K. Cook and M.R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Annales Mathematicae et Informaticae 41 (2013), 27–39.
  • [4] O. Deveci, E. Karaduman and G. Saˇglam, The Jacobsthal sequences in finite groups, Bull. Iranian Math. Soc. 42(1) (2016), 79–89.
  • [5] S. Halici, On Fibonacci quaternions, Adv. Appl. Clifford Algebras 22 (2012), 321–327.
  • [6] S. Halici, On complex Fibonacci quaternions, Adv. Appl. Clifford Algebras 23 (2013), 105–112.
  • [7] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Am. Math. Month. 70 (1963), 289–291.
  • [8] A. F. Horadam, Quaternion recurrence relations, Ulam Quarterly 2 (1993), 23–33.
  • [9] A. F. Horadam, Jacobsthal representation numbers, Fibonacci Quarterly 34 (1996), 40–54.
  • [10] M. R. Iyer, A note on Fibonacci quaternions, Fibonacci Quaterly 7(3) (1969), 225–229.
  • [11] D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quaterly 20(1) (1982), 73–76.
  • [12] F. Köken and D. Bozkurt, On the Jacobsthal numbers by matrix methods, Int. J. Contemp. Math. Sci. 3 (2008), 605–614.
  • [13] A. Szynal-Liana and I. Włoch, A Note on Jacobsthal Quaternions, Adv. Appl. Clifford Algebras 26 (2016), 441–447.
  • [14] F. Torunbalci Aydin and S.Yüce, A new approach to Jacobsthal quaternions, FILOMAT 31 (2017), 5567–5579.

On fourth-order jacobsthal quaternions

Year 2018, Volume: 1 Issue: 2, 73 - 79, 30.09.2018
https://doi.org/10.33187/jmsm.434543

Abstract

In this paper, we present for the first time a sequence of quaternions of order 4 that we will call the fourth-order Jacobsthal and the fourth-order Jacobsthal-Lucas quaternions. In particular, we are interested in the generating function, Binet formula, explicit formula and some interesting results for fourth-order Jacobsthal quaternions and fourth-order Jacobsthal-Lucas quaternions. This generalizes some previous results given by Szynal-Liana and Wloch in [13], Torunbalci Aydin and Yüce in [14] and Cerda-Morales in [2].

References

  • [1] P. Barry, Triangle geometry and Jacobsthal numbers, Irish Math. Soc. Bulletin 51 (2003), 45–57.
  • [2] G. Cerda-Morales, Identities for Third Order Jacobsthal Quaternions, Adv. Appl. Clifford Algebras 27(2) (2017), 1043–1053.
  • [3] C. K. Cook and M.R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Annales Mathematicae et Informaticae 41 (2013), 27–39.
  • [4] O. Deveci, E. Karaduman and G. Saˇglam, The Jacobsthal sequences in finite groups, Bull. Iranian Math. Soc. 42(1) (2016), 79–89.
  • [5] S. Halici, On Fibonacci quaternions, Adv. Appl. Clifford Algebras 22 (2012), 321–327.
  • [6] S. Halici, On complex Fibonacci quaternions, Adv. Appl. Clifford Algebras 23 (2013), 105–112.
  • [7] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Am. Math. Month. 70 (1963), 289–291.
  • [8] A. F. Horadam, Quaternion recurrence relations, Ulam Quarterly 2 (1993), 23–33.
  • [9] A. F. Horadam, Jacobsthal representation numbers, Fibonacci Quarterly 34 (1996), 40–54.
  • [10] M. R. Iyer, A note on Fibonacci quaternions, Fibonacci Quaterly 7(3) (1969), 225–229.
  • [11] D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quaterly 20(1) (1982), 73–76.
  • [12] F. Köken and D. Bozkurt, On the Jacobsthal numbers by matrix methods, Int. J. Contemp. Math. Sci. 3 (2008), 605–614.
  • [13] A. Szynal-Liana and I. Włoch, A Note on Jacobsthal Quaternions, Adv. Appl. Clifford Algebras 26 (2016), 441–447.
  • [14] F. Torunbalci Aydin and S.Yüce, A new approach to Jacobsthal quaternions, FILOMAT 31 (2017), 5567–5579.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Gamaliel Cerda-morales

Publication Date September 30, 2018
Submission Date June 18, 2018
Acceptance Date August 2, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Cerda-morales, G. (2018). On fourth-order jacobsthal quaternions. Journal of Mathematical Sciences and Modelling, 1(2), 73-79. https://doi.org/10.33187/jmsm.434543
AMA Cerda-morales G. On fourth-order jacobsthal quaternions. Journal of Mathematical Sciences and Modelling. September 2018;1(2):73-79. doi:10.33187/jmsm.434543
Chicago Cerda-morales, Gamaliel. “On Fourth-Order Jacobsthal Quaternions”. Journal of Mathematical Sciences and Modelling 1, no. 2 (September 2018): 73-79. https://doi.org/10.33187/jmsm.434543.
EndNote Cerda-morales G (September 1, 2018) On fourth-order jacobsthal quaternions. Journal of Mathematical Sciences and Modelling 1 2 73–79.
IEEE G. Cerda-morales, “On fourth-order jacobsthal quaternions”, Journal of Mathematical Sciences and Modelling, vol. 1, no. 2, pp. 73–79, 2018, doi: 10.33187/jmsm.434543.
ISNAD Cerda-morales, Gamaliel. “On Fourth-Order Jacobsthal Quaternions”. Journal of Mathematical Sciences and Modelling 1/2 (September 2018), 73-79. https://doi.org/10.33187/jmsm.434543.
JAMA Cerda-morales G. On fourth-order jacobsthal quaternions. Journal of Mathematical Sciences and Modelling. 2018;1:73–79.
MLA Cerda-morales, Gamaliel. “On Fourth-Order Jacobsthal Quaternions”. Journal of Mathematical Sciences and Modelling, vol. 1, no. 2, 2018, pp. 73-79, doi:10.33187/jmsm.434543.
Vancouver Cerda-morales G. On fourth-order jacobsthal quaternions. Journal of Mathematical Sciences and Modelling. 2018;1(2):73-9.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.