Research Article
BibTex RIS Cite

Semi-Analytical Option Pricing Under Double Heston Jump-Diffusion Hybrid Model

Year 2018, Volume: 1 Issue: 3, 138 - 152, 30.12.2018
https://doi.org/10.33187/jmsm.432019

Abstract

We examine European call options in the jump-diffusion version of the Double Heston stochastic volatility model for the underlying price process to provide a more flexible model for the term structure of volatility. We assume, in addition, that the stochastic interest rate is governed by the Cox-- Ross -- Ingersoll (CIR) dynamics. The instantaneous volatilities are correlated with the dynamics of the stock price process, whereas the short-term rate is assumed to be independent of the dynamics of the price process and its volatility. The main result furnishes a semi-analytical formula for the price of the European call option in the hybrid call option/interest rates model. Numerical results show that the model implied volatilities are comparable for in-sample but outperform out-of-sample implied volatilities compared to the benchmark Heston model[1], and Double Heston volatility model put forward by Christoffersen et al., [2] for calls on the S&P 500 index.

References

  • [1] S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Fin. Stud., 6 (1993), 327–343.
  • [2] P. Christoffersen, S. Heston, C. Jacobs, The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well, Management Sci., 55 (2009), 1914–1932.
  • [3] J. C. Cox, J. E. Ingersoll, S. A Ross, A theory of term structure of interest rates, Econometrica, 53 (1985), 385–408.
  • [4] J. Gatheral, The Volatility Surface, John Wiley, 2006.
  • [5] M. C. Recchioni, Y. Sun, An explicitly solvable Heston model with stochastic interest rates, European J. Oper. Res., 249 (2016), 359–377.
  • [6] G. Bakshi, C. Cao, Z. Chen, Empirical performance of alternative option pricing models, J. Finance, 5 (1997), 2003–2049.
  • [7] D. Bates, Jumps and stochastic volatility: exchange rate processes implicit in Deutsche Mark options, Rev. Fin. Stud., 9 (1996), 69–107.
  • [8] D. Duffie, J. Pan, K. Singleton, Transform analysis and asset pricing for affine jump-diffusions, Econometrica, 68 (2000), 1343–1376.
  • [9] T. Andersen, J. Andreasen, Jump-diffusion processes: Volatility smile fitting and numerical methods, J. Fin. Econ., 4 (2000), 231–262.
  • [10] B. Eraker, M. Johannes, N. Polson, The impacts of jumps in volatility and returns, J. Finance, 58 (2003), 1269–1300.
  • [11] A. L. Lewis, Option Valuation under Stochastic Volatility II, Finance Press, New Port Beach, California, USA 2016.
  • [12] R. Cont, T. Kokholm, A consistent pricing model for index options and volatility derivatives, Math. Finance, 23 (2013), 248–274.
  • [13] P. Carr, L. Wu, Stochastic skewness in currency options, J. Fin. Econ., 86 (2007), 213–244.
  • [14] A. Van Haastrecht, R. Lord, A. Pelsser, D. Schrager, Pricing long-maturity equity and FX derivatives with stochastic interest rates and stochastic volatility, Insurance Math. Econom., 45 (2009), 436–448.
  • [15] R. Schöbel, J. Zhu, Stochastic volatility with an Ornstein-Uhlenbeck process: An extension, Europ. Finance Rev., 3 (1999), 23–46.
  • [16] O. Vasicek, An equilibrium characterisation of the term structure, J. Fin. Econ., 5 (1977), 177–188.
  • [17] A. Van Haastrecht, A. Pelsser, Generic pricing of FX, inflation and stock options under stochastic interest rates and stochastic volatility, Quant. Fin., 11 (2011), 665–691.
  • [18] L. A. Grzelak, C. W. Oosterlee, On the Heston model with stochastic interest rates, SIAM J. Fin. Math., 2 (2011), 255–286.
  • [19] L. A. Grzelak, C. W. Oosterlee, On the Heston model with stochastic interest rates, Appl. Math. Finance, 19 (2012), 1–35.
  • [20] L. A. Grzelak, C. W. Oosterlee, S. Van Weeren, Extension of stochastic volatility models with Hull-White interest rate process, Quant. Finance, 12 (2012), 89–105.
  • [21] A. Cozma, C. Reisinger, Convergence of an Euler discretisation scheme for the Heston stochastic-local volatility model with CIR interest rates, available at http://ideas.repec.org/p/arx/papers/1501.06084.html
  • [22] R. Ahlip, M. Rutkowski, Semi-analytical pricing of currency options in the Heston/CIR jump-diffusion Hybrid model, Appl. Math. Finance, 22 (2015), 1–27.
  • [23] B. Wong, C. C. Heyde, On the martingale property of stochastic exponentials, J. Appl. Probab., 41 (2004), 654–664.
  • [24] M. Musiela, M. Rutkowski, Martingale Methods in Financial Modelling, Springer, Berlin, 2005.
  • [25] M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial Markets, Springer, Berlin, 2009.
  • [26] R. Ahlip, M. Rutkowski, Pricing of foreign exchange options under the Heston stochastic volatility model and the CIR interest rates, Quant. Finance, 13 (2013), 955–966.
  • [27] A. S. Trolle, Unspanned stochastic volatility and the pricing of commodity derivatives, Rev. Financ. Stud., 22 (2009), 4423–4461.
  • [28] C. Bernard, Z. Cui, C. McLeish, Nearly exact option price simulation using characteristic functions, Int. J. Theor. Appl. Finance, 2012, 1250047, 29 pages.
  • [29] D. Brigo, A. Alfonsi, Credit default swaps calibration and option pricing with the SSRD stochastic intensity and interest-rate model, Finance Stochast., 9 (2005), 29–42.
  • [30] P. Carr, D. Madan, Option valuation using the fast Fourier transform, J. Comput. Finance, 2 (1999), 61–73.
  • [31] P. Carr, D. Madan, Saddlepoint methods for option pricing, J. Comput. Finance, 13 (2009), 49–61.
  • [32] P. Carr, L. Wu, Time-changed Levy Processes and option pricing, J. Financ. Econ., 17 (2004), 113–141.
  • [33] S. Levendorski˘i, Efficient pricing and reliable calibration in the Heston model, Int. J. Theor. Appl. Finance, 15 (2012), 1250050, 44 pages.
  • [34] R. Lord, C. Kahl, Optimal Fourier inversion in semi-analytical option pricing, J. Comput. Finance, 10 (2007), 1–30.
  • [35] R. Lord, C. Kahl, Complex logarithms in Heston-like models, Math. Finance, 20 (2010), 671–694.
  • [36] F.D. Rouah, The Heston model: And it’s extensions in Matlab and C, J. Wiley & Sons, 2013.
Year 2018, Volume: 1 Issue: 3, 138 - 152, 30.12.2018
https://doi.org/10.33187/jmsm.432019

Abstract

References

  • [1] S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Fin. Stud., 6 (1993), 327–343.
  • [2] P. Christoffersen, S. Heston, C. Jacobs, The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well, Management Sci., 55 (2009), 1914–1932.
  • [3] J. C. Cox, J. E. Ingersoll, S. A Ross, A theory of term structure of interest rates, Econometrica, 53 (1985), 385–408.
  • [4] J. Gatheral, The Volatility Surface, John Wiley, 2006.
  • [5] M. C. Recchioni, Y. Sun, An explicitly solvable Heston model with stochastic interest rates, European J. Oper. Res., 249 (2016), 359–377.
  • [6] G. Bakshi, C. Cao, Z. Chen, Empirical performance of alternative option pricing models, J. Finance, 5 (1997), 2003–2049.
  • [7] D. Bates, Jumps and stochastic volatility: exchange rate processes implicit in Deutsche Mark options, Rev. Fin. Stud., 9 (1996), 69–107.
  • [8] D. Duffie, J. Pan, K. Singleton, Transform analysis and asset pricing for affine jump-diffusions, Econometrica, 68 (2000), 1343–1376.
  • [9] T. Andersen, J. Andreasen, Jump-diffusion processes: Volatility smile fitting and numerical methods, J. Fin. Econ., 4 (2000), 231–262.
  • [10] B. Eraker, M. Johannes, N. Polson, The impacts of jumps in volatility and returns, J. Finance, 58 (2003), 1269–1300.
  • [11] A. L. Lewis, Option Valuation under Stochastic Volatility II, Finance Press, New Port Beach, California, USA 2016.
  • [12] R. Cont, T. Kokholm, A consistent pricing model for index options and volatility derivatives, Math. Finance, 23 (2013), 248–274.
  • [13] P. Carr, L. Wu, Stochastic skewness in currency options, J. Fin. Econ., 86 (2007), 213–244.
  • [14] A. Van Haastrecht, R. Lord, A. Pelsser, D. Schrager, Pricing long-maturity equity and FX derivatives with stochastic interest rates and stochastic volatility, Insurance Math. Econom., 45 (2009), 436–448.
  • [15] R. Schöbel, J. Zhu, Stochastic volatility with an Ornstein-Uhlenbeck process: An extension, Europ. Finance Rev., 3 (1999), 23–46.
  • [16] O. Vasicek, An equilibrium characterisation of the term structure, J. Fin. Econ., 5 (1977), 177–188.
  • [17] A. Van Haastrecht, A. Pelsser, Generic pricing of FX, inflation and stock options under stochastic interest rates and stochastic volatility, Quant. Fin., 11 (2011), 665–691.
  • [18] L. A. Grzelak, C. W. Oosterlee, On the Heston model with stochastic interest rates, SIAM J. Fin. Math., 2 (2011), 255–286.
  • [19] L. A. Grzelak, C. W. Oosterlee, On the Heston model with stochastic interest rates, Appl. Math. Finance, 19 (2012), 1–35.
  • [20] L. A. Grzelak, C. W. Oosterlee, S. Van Weeren, Extension of stochastic volatility models with Hull-White interest rate process, Quant. Finance, 12 (2012), 89–105.
  • [21] A. Cozma, C. Reisinger, Convergence of an Euler discretisation scheme for the Heston stochastic-local volatility model with CIR interest rates, available at http://ideas.repec.org/p/arx/papers/1501.06084.html
  • [22] R. Ahlip, M. Rutkowski, Semi-analytical pricing of currency options in the Heston/CIR jump-diffusion Hybrid model, Appl. Math. Finance, 22 (2015), 1–27.
  • [23] B. Wong, C. C. Heyde, On the martingale property of stochastic exponentials, J. Appl. Probab., 41 (2004), 654–664.
  • [24] M. Musiela, M. Rutkowski, Martingale Methods in Financial Modelling, Springer, Berlin, 2005.
  • [25] M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial Markets, Springer, Berlin, 2009.
  • [26] R. Ahlip, M. Rutkowski, Pricing of foreign exchange options under the Heston stochastic volatility model and the CIR interest rates, Quant. Finance, 13 (2013), 955–966.
  • [27] A. S. Trolle, Unspanned stochastic volatility and the pricing of commodity derivatives, Rev. Financ. Stud., 22 (2009), 4423–4461.
  • [28] C. Bernard, Z. Cui, C. McLeish, Nearly exact option price simulation using characteristic functions, Int. J. Theor. Appl. Finance, 2012, 1250047, 29 pages.
  • [29] D. Brigo, A. Alfonsi, Credit default swaps calibration and option pricing with the SSRD stochastic intensity and interest-rate model, Finance Stochast., 9 (2005), 29–42.
  • [30] P. Carr, D. Madan, Option valuation using the fast Fourier transform, J. Comput. Finance, 2 (1999), 61–73.
  • [31] P. Carr, D. Madan, Saddlepoint methods for option pricing, J. Comput. Finance, 13 (2009), 49–61.
  • [32] P. Carr, L. Wu, Time-changed Levy Processes and option pricing, J. Financ. Econ., 17 (2004), 113–141.
  • [33] S. Levendorski˘i, Efficient pricing and reliable calibration in the Heston model, Int. J. Theor. Appl. Finance, 15 (2012), 1250050, 44 pages.
  • [34] R. Lord, C. Kahl, Optimal Fourier inversion in semi-analytical option pricing, J. Comput. Finance, 10 (2007), 1–30.
  • [35] R. Lord, C. Kahl, Complex logarithms in Heston-like models, Math. Finance, 20 (2010), 671–694.
  • [36] F.D. Rouah, The Heston model: And it’s extensions in Matlab and C, J. Wiley & Sons, 2013.
There are 36 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Rehez Ahlip This is me

Laurence A. F. Park This is me

Ante Prodan 0000-0001-9684-7967

Publication Date December 30, 2018
Submission Date June 8, 2018
Acceptance Date September 26, 2018
Published in Issue Year 2018 Volume: 1 Issue: 3

Cite

APA Ahlip, R., Park, L. A. F., & Prodan, A. (2018). Semi-Analytical Option Pricing Under Double Heston Jump-Diffusion Hybrid Model. Journal of Mathematical Sciences and Modelling, 1(3), 138-152. https://doi.org/10.33187/jmsm.432019
AMA Ahlip R, Park LAF, Prodan A. Semi-Analytical Option Pricing Under Double Heston Jump-Diffusion Hybrid Model. Journal of Mathematical Sciences and Modelling. December 2018;1(3):138-152. doi:10.33187/jmsm.432019
Chicago Ahlip, Rehez, Laurence A. F. Park, and Ante Prodan. “Semi-Analytical Option Pricing Under Double Heston Jump-Diffusion Hybrid Model”. Journal of Mathematical Sciences and Modelling 1, no. 3 (December 2018): 138-52. https://doi.org/10.33187/jmsm.432019.
EndNote Ahlip R, Park LAF, Prodan A (December 1, 2018) Semi-Analytical Option Pricing Under Double Heston Jump-Diffusion Hybrid Model. Journal of Mathematical Sciences and Modelling 1 3 138–152.
IEEE R. Ahlip, L. A. F. Park, and A. Prodan, “Semi-Analytical Option Pricing Under Double Heston Jump-Diffusion Hybrid Model”, Journal of Mathematical Sciences and Modelling, vol. 1, no. 3, pp. 138–152, 2018, doi: 10.33187/jmsm.432019.
ISNAD Ahlip, Rehez et al. “Semi-Analytical Option Pricing Under Double Heston Jump-Diffusion Hybrid Model”. Journal of Mathematical Sciences and Modelling 1/3 (December 2018), 138-152. https://doi.org/10.33187/jmsm.432019.
JAMA Ahlip R, Park LAF, Prodan A. Semi-Analytical Option Pricing Under Double Heston Jump-Diffusion Hybrid Model. Journal of Mathematical Sciences and Modelling. 2018;1:138–152.
MLA Ahlip, Rehez et al. “Semi-Analytical Option Pricing Under Double Heston Jump-Diffusion Hybrid Model”. Journal of Mathematical Sciences and Modelling, vol. 1, no. 3, 2018, pp. 138-52, doi:10.33187/jmsm.432019.
Vancouver Ahlip R, Park LAF, Prodan A. Semi-Analytical Option Pricing Under Double Heston Jump-Diffusion Hybrid Model. Journal of Mathematical Sciences and Modelling. 2018;1(3):138-52.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.