Research Article
BibTex RIS Cite
Year 2022, Volume: 5 Issue: 3, 105 - 112, 01.12.2022
https://doi.org/10.33187/jmsm.1059716

Abstract

References

  • [1] J. Banas, K. Geobel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math., 60, Marcel Dekker, New York and Basel, 1980.
  • [2] M. Mursaleen, Syed M. H. Rizvi, B. Samet, Measures of Noncompactness and their Applications, Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness, 59-125, Springer, Singapore, 2017.
  • [3] S. Baghdad, Existence and stability of solutions for a system of quadratic integral equations in Banach algebras, Ann. Univ. Paedagog. Crac. Stud. Math., 19 (2020), 203-218.
  • [4] S. Baghdad, M. Benchohra, Global existence and stability results for Hadamard-Volterra-Stieltjes integral equation, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68(2) (2019), 1387-1400.
  • [5] M. Benchohra, M. A. Darwish, On quadratic integral equations of Urysohn type in Fr´echet spaces, Acta Math. Univ. Comenian. (N.S.), 79(1) (2010), 105-110.
  • [6] L. Olszowy, Fixed point theorems in the Fr´echet space C(R+) and functional integral equations on an unbounded interval, Appl. Math. Comput. 218(18) (2012), 9066-9074.
  • [7] K. D. Bierstedt, J. Bonet, Some aspects of the modern theory of Fr´echet spaces, RACSAM. Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat., 97(2) (2003), 159-188.
  • [8] V. Dietmar, Lectures on Fr´echet Spaces, Bergische Universit¨at Wuppertal Sommersemester, 2000.
  • [9] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fractals, 134 (2020), 109705.
  • [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
  • [11] H. Mohammadi, S. Kumar, S. Rezapour; S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fractals, 144 (2021), 110668.
  • [12] Y.-M. Chu, S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, More new results on integral inequalities for generalized K -fractional conformable integral operators, Discrete Contin. Dyn. Syst. Ser. S 14(7) (2021), 2119-2135.
  • [13] S. Abbas, M. Benchohra, G. M. N’Gu´er´ekata Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
  • [14] D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020(1) (2020), Article number: 64, 16 pages.
  • [15] P. O. Mohammed, T. Abdeljawad, F. Jarad, Y. M. Chu, Existence and uniqueness of uncertain fractional backward difference equations of Riemann-Liouville type, Math. Probl. Eng., 2020 (2020), Article ID: 6598682, 8 pages.
  • [16] J. Bana´s; T. Zaja¸c, A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl., 375(2) (2011), 375-387.
  • [17] S. Abbas, M. Benchohra, J. Henderson, Asymptotic behavior of solutions of nonlinear fractional order Riemann-Liouville Volterra-Stieltjes quadratic integral equations, Int. Elect. J. Pure Appl. Math., 4(3) (2012), 195-209.
  • [18] S. Abbas, M. Benchohra, J. J. Nieto, Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations, Electron. J. Qual. Theory Differ. Equ., 81 (2012), 1-15.
  • [19] S. Samko, A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives (Theorie and Applications), Gordon and Breach Science Publishers, Yverdon, 1993.
  • [20] I. P. Natanson, Theory of Functions of a Real Variable, Ungar, New York, 1960.
  • [21] B. G. Pachpatte, Inequalities for Differential and Integral Equations, William F. Ames, Georgia Institute of Technology, 1998.
  • [22] L. Olszowy, S. Dudek, On generalization of Darbo-Sadovskii type fixed point theorems for iterated mappings in Fr´echet spaces, J. Fixed Point Theory Appl., 20(4) (2018), Article number: 146, 12 pages.
  • [23] J. Daneˇs, Some fixed point theorems, Comment. Math. Univ. Carolinae, 9 (1968), 223-235.
  • [24] F. Wang, H. Zhou, Fixed point theorems in locally convex spaces and a nonlinear integral equation of mixed type, Fixed Point Theory Appl., 2015(1)(2015), Article number: 228228, 11 pages.

Existence Results for Fractional Integral Equations in Frechet Spaces

Year 2022, Volume: 5 Issue: 3, 105 - 112, 01.12.2022
https://doi.org/10.33187/jmsm.1059716

Abstract

The objective of this paper is to present results on the existence of solutions for a class of fractional integral equations in Fr\'{e}chet spaces of Banach space-valued functions on the unbounded interval. Our main tool is the technique of measures of noncompactness and fixed points theorems.

References

  • [1] J. Banas, K. Geobel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math., 60, Marcel Dekker, New York and Basel, 1980.
  • [2] M. Mursaleen, Syed M. H. Rizvi, B. Samet, Measures of Noncompactness and their Applications, Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness, 59-125, Springer, Singapore, 2017.
  • [3] S. Baghdad, Existence and stability of solutions for a system of quadratic integral equations in Banach algebras, Ann. Univ. Paedagog. Crac. Stud. Math., 19 (2020), 203-218.
  • [4] S. Baghdad, M. Benchohra, Global existence and stability results for Hadamard-Volterra-Stieltjes integral equation, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68(2) (2019), 1387-1400.
  • [5] M. Benchohra, M. A. Darwish, On quadratic integral equations of Urysohn type in Fr´echet spaces, Acta Math. Univ. Comenian. (N.S.), 79(1) (2010), 105-110.
  • [6] L. Olszowy, Fixed point theorems in the Fr´echet space C(R+) and functional integral equations on an unbounded interval, Appl. Math. Comput. 218(18) (2012), 9066-9074.
  • [7] K. D. Bierstedt, J. Bonet, Some aspects of the modern theory of Fr´echet spaces, RACSAM. Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat., 97(2) (2003), 159-188.
  • [8] V. Dietmar, Lectures on Fr´echet Spaces, Bergische Universit¨at Wuppertal Sommersemester, 2000.
  • [9] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fractals, 134 (2020), 109705.
  • [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
  • [11] H. Mohammadi, S. Kumar, S. Rezapour; S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fractals, 144 (2021), 110668.
  • [12] Y.-M. Chu, S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, More new results on integral inequalities for generalized K -fractional conformable integral operators, Discrete Contin. Dyn. Syst. Ser. S 14(7) (2021), 2119-2135.
  • [13] S. Abbas, M. Benchohra, G. M. N’Gu´er´ekata Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
  • [14] D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020(1) (2020), Article number: 64, 16 pages.
  • [15] P. O. Mohammed, T. Abdeljawad, F. Jarad, Y. M. Chu, Existence and uniqueness of uncertain fractional backward difference equations of Riemann-Liouville type, Math. Probl. Eng., 2020 (2020), Article ID: 6598682, 8 pages.
  • [16] J. Bana´s; T. Zaja¸c, A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl., 375(2) (2011), 375-387.
  • [17] S. Abbas, M. Benchohra, J. Henderson, Asymptotic behavior of solutions of nonlinear fractional order Riemann-Liouville Volterra-Stieltjes quadratic integral equations, Int. Elect. J. Pure Appl. Math., 4(3) (2012), 195-209.
  • [18] S. Abbas, M. Benchohra, J. J. Nieto, Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations, Electron. J. Qual. Theory Differ. Equ., 81 (2012), 1-15.
  • [19] S. Samko, A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives (Theorie and Applications), Gordon and Breach Science Publishers, Yverdon, 1993.
  • [20] I. P. Natanson, Theory of Functions of a Real Variable, Ungar, New York, 1960.
  • [21] B. G. Pachpatte, Inequalities for Differential and Integral Equations, William F. Ames, Georgia Institute of Technology, 1998.
  • [22] L. Olszowy, S. Dudek, On generalization of Darbo-Sadovskii type fixed point theorems for iterated mappings in Fr´echet spaces, J. Fixed Point Theory Appl., 20(4) (2018), Article number: 146, 12 pages.
  • [23] J. Daneˇs, Some fixed point theorems, Comment. Math. Univ. Carolinae, 9 (1968), 223-235.
  • [24] F. Wang, H. Zhou, Fixed point theorems in locally convex spaces and a nonlinear integral equation of mixed type, Fixed Point Theory Appl., 2015(1)(2015), Article number: 228228, 11 pages.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Said Baghdad 0000-0001-7165-670X

Publication Date December 1, 2022
Submission Date January 18, 2022
Acceptance Date September 5, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Baghdad, S. (2022). Existence Results for Fractional Integral Equations in Frechet Spaces. Journal of Mathematical Sciences and Modelling, 5(3), 105-112. https://doi.org/10.33187/jmsm.1059716
AMA Baghdad S. Existence Results for Fractional Integral Equations in Frechet Spaces. Journal of Mathematical Sciences and Modelling. December 2022;5(3):105-112. doi:10.33187/jmsm.1059716
Chicago Baghdad, Said. “Existence Results for Fractional Integral Equations in Frechet Spaces”. Journal of Mathematical Sciences and Modelling 5, no. 3 (December 2022): 105-12. https://doi.org/10.33187/jmsm.1059716.
EndNote Baghdad S (December 1, 2022) Existence Results for Fractional Integral Equations in Frechet Spaces. Journal of Mathematical Sciences and Modelling 5 3 105–112.
IEEE S. Baghdad, “Existence Results for Fractional Integral Equations in Frechet Spaces”, Journal of Mathematical Sciences and Modelling, vol. 5, no. 3, pp. 105–112, 2022, doi: 10.33187/jmsm.1059716.
ISNAD Baghdad, Said. “Existence Results for Fractional Integral Equations in Frechet Spaces”. Journal of Mathematical Sciences and Modelling 5/3 (December 2022), 105-112. https://doi.org/10.33187/jmsm.1059716.
JAMA Baghdad S. Existence Results for Fractional Integral Equations in Frechet Spaces. Journal of Mathematical Sciences and Modelling. 2022;5:105–112.
MLA Baghdad, Said. “Existence Results for Fractional Integral Equations in Frechet Spaces”. Journal of Mathematical Sciences and Modelling, vol. 5, no. 3, 2022, pp. 105-12, doi:10.33187/jmsm.1059716.
Vancouver Baghdad S. Existence Results for Fractional Integral Equations in Frechet Spaces. Journal of Mathematical Sciences and Modelling. 2022;5(3):105-12.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.