Research Article
BibTex RIS Cite
Year 2022, Volume: 5 Issue: 3, 80 - 91, 01.12.2022
https://doi.org/10.33187/jmsm.972781

Abstract

References

  • [1] R. Carbo-Dorca, Boolean Hypercubes, Mersenne numbers and the Collatz conjecture, J. Math. Sci. Mod., 3 (2020), 120-129.
  • [2] The Collatz conjecture. Wikipedia, https://en.wikipedia.org/wiki/Collatz conjecture “What is the Importance of the Collatz Conjecture?” https://math.stackexchange.com/questions/2694/what-is-the-importanceof-the-collatz-conjecture.
  • [3] H. Nowak, Collatz conjecture and emergent properties, https://www.youtube.com/watch?v=QrzcHhBQ2b0.
  • [4] J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92(1) (1985), 323.
  • [5] J. C. Lagarias, A. Weiss, The 3x+1 problem: two stochastic models, Ann. Applied Prob. 2 (1992), 329-361.
  • [6] I. Korec, A density estimate for the 3x+1 problem, Math. Slovaca, 44 (1994), 85-89.
  • [7] G. J. Wirsching, The Dynamical System Generated by the 3n+1 Function, Lecture Notes in Math. 1681, Springer-Verlag, New York, 1998.
  • [8] J. C. Lagarias, K. Soundararajan, Benford’s law for the 3x+1 function, J. London Math. Soc., 74 (2006), 289-303.
  • [9] J. C. Lagarias, ed.; The ultimate challenge: the 3x+1 problem. Providence, R. I.: Amer. Math. Soc., (2010).
  • [10] F. Oan, J. P. Draayer, A polynomial approach to the Collatz conjecture, arXiv.org: 1905.08462 [math. NT] (2019).
  • [11] F. Izadi, A new approach on proving Collatz conjecture, Journal of Mathematics, Hindawi, 2019 (2019), Article ID: 6129836, 12 pages.
  • [12] D. Barina, Convergence verification of the Collatz problem, The Journal of Supercomputing, 77(3) (2021), 2681-2688.
  • [13] T. Tao, Almost all orbits of the Collatz map attain almost bounded values, In Forum of Mathematics, Pi (Vol. 10). Cambridge University Press, 2022.
  • [14] J. A. T. Machado, A. Galhano, D. Cao Labora, A clustering perspective of the Collatz conjecture, Mathematics, 9 (2021), 314-328.
  • [15] F. Izadi, Complete proof of Collatz’s conjectures, arXiv:2101.06107v4 [math. GM], (2021).
  • [16] B. M. Gurbaxani, An engineering and statistical look at the Collatz (3n+1) conjecture ResearchGate Preprint, 14 March (2021).
  • [17] B. B. Stefanov, Two-parameter generalization of the Collatz function characterization of terminal cycles and empirical results, Online Mathematics OMJ, 03(01) (2021), 19-25.
  • [18] L.-O. Pochon, A. Favre, La suite de Syracuse, un monde de conjectures, (2021) ffhal01593181v3f.
  • [19] C. Castro Perelman, R. Carb´o-Dorca, The Collatz conjecture and the quantum mechanical harmonic oscillator, J. Math. Chem. 60 (2022), 145-160.
  • [20] N. Fabiano, N. Mirkov, S. Radenovic, Collatz hypothesis and Planck’s black body radiation, J. Siberian Fed. Univ. Mathematics & Physics, 2 (2021), 1-5.
  • [21] A. Rahn, E. Sultanov, M. Henkel, S. Ghosh, I. J. Aberkane, An algorithm for linearizing the Collatz convergence, Mathematics, 9 (2021), 1898-1930.
  • [22] J. Kleinnijenhuis, A. M. Kleinnijenhuis, Pruning the binary tree, proving the Collatz conjecture, ResearchGate Preprint (no file attached), August (2020).
  • [23] M. R. Schwob, P. Shiue, R. Venkat, Novel theorems and algorithms relating to the Collatz conjecture, Int. J. Math. Math. Sci., 2021 (2021), Article ID: 5754439, 10 pages, (2021).
  • [24] https://www.mersenne.org/primes/
  • [25] R. Carb´o-Dorca, Cantor-like infinity sequences and G¨odel-like incompleteness revealed by means of Mersenne infinite dimensional Boolean Hypercube concatenation, J. Math. Chem., 58 (2020), 1-5.
  • [26] R. Carbo-Dorca, About Erd¨os discrepancy conjecture, J. Math. Chem., 54 (2016), 657-660.
  • [27] R. Carbo-Dorca, N-dimensional Boolean Hypercubes and the Goldbach conjecture, J. Math. Chem., 54 (2016), 1213-1220.
  • [28] R. Carbo-Dorca, Natural vector spaces, (Inward power and Minkowski norm of a natural vector, natural Boolean Hypercubes) and Fermat’s last theorem, J. Math. Chem., 55 (2017), 914-940.
  • [29] R. Carbo-Dorca, Boolean Hypercubes and the structure of vector Spaces, J. Math. Sci. Mod., 1 (2018), 1-14.
  • [30] R. Carbo-Dorca, Role of the structure of Boolean Hypercubes when used as vectors in natural (Boolean) vector semi spaces, J. Math. Chem., 57 (2019), 697-700.
  • [31] R. Carbo, E. Besal´u, Definition, mathematical examples and quantum chemical applications of nested summation symbols and logical Kronecker deltas, Computers & Chemistry 18 (1994), 117-126.
  • [32] E. Besalu, R. Carbo, Definition and quantum chemical applications of nested summation symbols and logical Kronecker deltas: Pedagogical Artificial intelligence devices for formulae writing, sequential programming and automatic parallel implementation, J. Math. Chem., 18 (1995), 37-72.
  • [33] R. Carbo-Dorca, Logical Kronecker delta deconstruction of the absolute value function and the treatment of absolute deviations, J. Math. Chem., 49 (2011), 619-624.
  • [34] R. Carbo-Dorca, Inward matrix products: Extensions and applications to quantum mechanical foundations of QSAR, J. Mol. Struct. Teochem, 537 (2001), 41-54.
  • [35] R. Carbo-Dorca, Inward Matrix product algebra and calculus as tools to construct space-time frames of arbitrary dimensions, J. Math. Chem., 30 (2001), 227-245.

Boolean Hypercubes, Classification of Natural Numbers, and the Collatz Conjecture

Year 2022, Volume: 5 Issue: 3, 80 - 91, 01.12.2022
https://doi.org/10.33187/jmsm.972781

Abstract

Using simple arguments derived from the Boolean hypercube configuration, the structure of natural spaces, and the recursive exponential generation of the set of natural numbers, a linear classification of the natural numbers is presented. The definition of a pseudolinear Collatz operator, the description of the set of powers of $2$, and the construction of the natural numbers via this power set might heuristically prove the Collatz conjecture from an empirical point of view.

References

  • [1] R. Carbo-Dorca, Boolean Hypercubes, Mersenne numbers and the Collatz conjecture, J. Math. Sci. Mod., 3 (2020), 120-129.
  • [2] The Collatz conjecture. Wikipedia, https://en.wikipedia.org/wiki/Collatz conjecture “What is the Importance of the Collatz Conjecture?” https://math.stackexchange.com/questions/2694/what-is-the-importanceof-the-collatz-conjecture.
  • [3] H. Nowak, Collatz conjecture and emergent properties, https://www.youtube.com/watch?v=QrzcHhBQ2b0.
  • [4] J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92(1) (1985), 323.
  • [5] J. C. Lagarias, A. Weiss, The 3x+1 problem: two stochastic models, Ann. Applied Prob. 2 (1992), 329-361.
  • [6] I. Korec, A density estimate for the 3x+1 problem, Math. Slovaca, 44 (1994), 85-89.
  • [7] G. J. Wirsching, The Dynamical System Generated by the 3n+1 Function, Lecture Notes in Math. 1681, Springer-Verlag, New York, 1998.
  • [8] J. C. Lagarias, K. Soundararajan, Benford’s law for the 3x+1 function, J. London Math. Soc., 74 (2006), 289-303.
  • [9] J. C. Lagarias, ed.; The ultimate challenge: the 3x+1 problem. Providence, R. I.: Amer. Math. Soc., (2010).
  • [10] F. Oan, J. P. Draayer, A polynomial approach to the Collatz conjecture, arXiv.org: 1905.08462 [math. NT] (2019).
  • [11] F. Izadi, A new approach on proving Collatz conjecture, Journal of Mathematics, Hindawi, 2019 (2019), Article ID: 6129836, 12 pages.
  • [12] D. Barina, Convergence verification of the Collatz problem, The Journal of Supercomputing, 77(3) (2021), 2681-2688.
  • [13] T. Tao, Almost all orbits of the Collatz map attain almost bounded values, In Forum of Mathematics, Pi (Vol. 10). Cambridge University Press, 2022.
  • [14] J. A. T. Machado, A. Galhano, D. Cao Labora, A clustering perspective of the Collatz conjecture, Mathematics, 9 (2021), 314-328.
  • [15] F. Izadi, Complete proof of Collatz’s conjectures, arXiv:2101.06107v4 [math. GM], (2021).
  • [16] B. M. Gurbaxani, An engineering and statistical look at the Collatz (3n+1) conjecture ResearchGate Preprint, 14 March (2021).
  • [17] B. B. Stefanov, Two-parameter generalization of the Collatz function characterization of terminal cycles and empirical results, Online Mathematics OMJ, 03(01) (2021), 19-25.
  • [18] L.-O. Pochon, A. Favre, La suite de Syracuse, un monde de conjectures, (2021) ffhal01593181v3f.
  • [19] C. Castro Perelman, R. Carb´o-Dorca, The Collatz conjecture and the quantum mechanical harmonic oscillator, J. Math. Chem. 60 (2022), 145-160.
  • [20] N. Fabiano, N. Mirkov, S. Radenovic, Collatz hypothesis and Planck’s black body radiation, J. Siberian Fed. Univ. Mathematics & Physics, 2 (2021), 1-5.
  • [21] A. Rahn, E. Sultanov, M. Henkel, S. Ghosh, I. J. Aberkane, An algorithm for linearizing the Collatz convergence, Mathematics, 9 (2021), 1898-1930.
  • [22] J. Kleinnijenhuis, A. M. Kleinnijenhuis, Pruning the binary tree, proving the Collatz conjecture, ResearchGate Preprint (no file attached), August (2020).
  • [23] M. R. Schwob, P. Shiue, R. Venkat, Novel theorems and algorithms relating to the Collatz conjecture, Int. J. Math. Math. Sci., 2021 (2021), Article ID: 5754439, 10 pages, (2021).
  • [24] https://www.mersenne.org/primes/
  • [25] R. Carb´o-Dorca, Cantor-like infinity sequences and G¨odel-like incompleteness revealed by means of Mersenne infinite dimensional Boolean Hypercube concatenation, J. Math. Chem., 58 (2020), 1-5.
  • [26] R. Carbo-Dorca, About Erd¨os discrepancy conjecture, J. Math. Chem., 54 (2016), 657-660.
  • [27] R. Carbo-Dorca, N-dimensional Boolean Hypercubes and the Goldbach conjecture, J. Math. Chem., 54 (2016), 1213-1220.
  • [28] R. Carbo-Dorca, Natural vector spaces, (Inward power and Minkowski norm of a natural vector, natural Boolean Hypercubes) and Fermat’s last theorem, J. Math. Chem., 55 (2017), 914-940.
  • [29] R. Carbo-Dorca, Boolean Hypercubes and the structure of vector Spaces, J. Math. Sci. Mod., 1 (2018), 1-14.
  • [30] R. Carbo-Dorca, Role of the structure of Boolean Hypercubes when used as vectors in natural (Boolean) vector semi spaces, J. Math. Chem., 57 (2019), 697-700.
  • [31] R. Carbo, E. Besal´u, Definition, mathematical examples and quantum chemical applications of nested summation symbols and logical Kronecker deltas, Computers & Chemistry 18 (1994), 117-126.
  • [32] E. Besalu, R. Carbo, Definition and quantum chemical applications of nested summation symbols and logical Kronecker deltas: Pedagogical Artificial intelligence devices for formulae writing, sequential programming and automatic parallel implementation, J. Math. Chem., 18 (1995), 37-72.
  • [33] R. Carbo-Dorca, Logical Kronecker delta deconstruction of the absolute value function and the treatment of absolute deviations, J. Math. Chem., 49 (2011), 619-624.
  • [34] R. Carbo-Dorca, Inward matrix products: Extensions and applications to quantum mechanical foundations of QSAR, J. Mol. Struct. Teochem, 537 (2001), 41-54.
  • [35] R. Carbo-Dorca, Inward Matrix product algebra and calculus as tools to construct space-time frames of arbitrary dimensions, J. Math. Chem., 30 (2001), 227-245.
There are 35 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ramon Carbó Dorca 0000-0002-9219-0686

Carlos Perelman 0000-0002-7276-9957

Publication Date December 1, 2022
Submission Date July 17, 2021
Acceptance Date September 16, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Carbó Dorca, R., & Perelman, C. (2022). Boolean Hypercubes, Classification of Natural Numbers, and the Collatz Conjecture. Journal of Mathematical Sciences and Modelling, 5(3), 80-91. https://doi.org/10.33187/jmsm.972781
AMA Carbó Dorca R, Perelman C. Boolean Hypercubes, Classification of Natural Numbers, and the Collatz Conjecture. Journal of Mathematical Sciences and Modelling. December 2022;5(3):80-91. doi:10.33187/jmsm.972781
Chicago Carbó Dorca, Ramon, and Carlos Perelman. “Boolean Hypercubes, Classification of Natural Numbers, and the Collatz Conjecture”. Journal of Mathematical Sciences and Modelling 5, no. 3 (December 2022): 80-91. https://doi.org/10.33187/jmsm.972781.
EndNote Carbó Dorca R, Perelman C (December 1, 2022) Boolean Hypercubes, Classification of Natural Numbers, and the Collatz Conjecture. Journal of Mathematical Sciences and Modelling 5 3 80–91.
IEEE R. Carbó Dorca and C. Perelman, “Boolean Hypercubes, Classification of Natural Numbers, and the Collatz Conjecture”, Journal of Mathematical Sciences and Modelling, vol. 5, no. 3, pp. 80–91, 2022, doi: 10.33187/jmsm.972781.
ISNAD Carbó Dorca, Ramon - Perelman, Carlos. “Boolean Hypercubes, Classification of Natural Numbers, and the Collatz Conjecture”. Journal of Mathematical Sciences and Modelling 5/3 (December 2022), 80-91. https://doi.org/10.33187/jmsm.972781.
JAMA Carbó Dorca R, Perelman C. Boolean Hypercubes, Classification of Natural Numbers, and the Collatz Conjecture. Journal of Mathematical Sciences and Modelling. 2022;5:80–91.
MLA Carbó Dorca, Ramon and Carlos Perelman. “Boolean Hypercubes, Classification of Natural Numbers, and the Collatz Conjecture”. Journal of Mathematical Sciences and Modelling, vol. 5, no. 3, 2022, pp. 80-91, doi:10.33187/jmsm.972781.
Vancouver Carbó Dorca R, Perelman C. Boolean Hypercubes, Classification of Natural Numbers, and the Collatz Conjecture. Journal of Mathematical Sciences and Modelling. 2022;5(3):80-91.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.