Research Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 2, 56 - 64, 07.08.2023
https://doi.org/10.33187/jmsm.1222532

Abstract

References

  • [1] H. Esmonde, S. Holm, Fractional derivative modelling of adhesive cure, Appl. Math. Model., 77(2) (2020), 1041-1053. doi.org/10.1016/j.apm.2019.08.021
  • [2] B. Jamil, M.S. Anwar, A. Rasheed, M. Irfan, MHD Maxwell flow modeled by fractional derivatives with chemical reaction and thermal radiation, Chaos Solitons Fractals, 67 (2020), 512-533.
  • [3] C. Zu, X. Yu, Time fractional Schr¨odinger equation with a limit based fractional derivative, Chaos Solitons Fractals, 157 (2022), 111941.
  • [4] J.L. Echenaus´ıa-Monroy, H.E. Gilardi-Vel´azquez, R. Jaimes-Re´ategui, V. Aboites, G. Huerta-Cuellar, A physical interpretation of fractional-orderderivatives in a jerk system: Electronic approach, Chaos Solitons Fractals, 90 (2020), 105413.
  • [5] C.M.A. Pinto, J.T. Machado, Fractional model for malaria transmission under control strategies, Comput. Math. Appl., 66(5) (2013), 908–916.
  • [6] E. Balcı, I. Ozturk, S. Kartal, Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative, Chaos Solitons Fractals, 123 (2019), 43-51.
  • [7] M.B. Ghori, P.A. Naik, J. Zu, Z. Eskandari, M. Naik, Global dynamics and bifurcation analysis of a fractional- order SEIR epidemic model with saturation incidence rate, Math. Meth. Appl. Sci., 45(7) (2022), 3665– 3688.
  • [8] P.A. Naik, M. Ghoreishi, J. Zu, Approximate solution of a nonlinear fractional-order HIV model using homotopy analysis method, Int. J. Numer. Anal. Model., 19(1) (2022), 52-84.
  • [9] P.A. Naik, K.M. Owolabi, M. Yavuz, M, J. Zu, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos Solitons Fractals, 140 (2020), 110272.
  • [10] P.F. Qu, Q.Z. Zhu, Y.F. Sun, Elastoplastic modelling of mechanical behavior of rocks with fractional-order plastic flow, Int. J. Mech. Sci., 163 (2019), 105102.
  • [11] C. Huang, J. Cao, M. Xiao, A. Alsaedi, T. Hayat, Bifurcations in a delayed fractional complex-valued neural network, Appl. Math. Comput., 292 (2017), 210-227.
  • [12] V.E. Tarasov, No nonlocality. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 157-163.
  • [13] B. Barman, B. Ghosh, B. Explicit impacts of harvesting in delayed predator-prey models, Chaos Solitons Fractals, 122 (2019), 213-228.
  • [14] J. Cermak, J, Hornicek, T. Kisela, T. Stability regions for fractional differential systems with a time delay, Commun. Nonlinear Sci. Numer. Simul., 1(3) (2016), 108-123.
  • [15] S. Liu, R. Yang, X.F. Zhou, W. Jiang, X. Li, X.W. Zhao, Stability analysis of fractional delayed equations and its applications on consensus of multi-agent systems, Commun. Nonlinear Sci. Numer. Simul., 73 (2016), 351-362.
  • [16] M. Lazarevic, Stability and stabilization of fractional order time-delay systems, Sci. Tech. Rev., 61(1) (2011), 31-44.
  • [17] X. Li, R. Wu, Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system, Nonlinear Dyn., 78(1) (2014), 279-288.
  • [18] H. Li, C. Huang, T. Li, Dynamic complexity of a fractional-order predator–prey system with double delays, Phys. A, 526 (2019), 120852.
  • [19] J. Alidousti, M.M. Ghahfarokhi, Stability and bifurcation for time delay fractional predator prey system by incorporating the dispersal of prey, Appl. Math. Model., 72 (2019), 385-402.
  • [20] E. Balcı, I. Ozturk, S. Kartal, Comparison of dynamical behavior between fractional order delayed and discrete conformable fractional order tumor-immune system, Math. Model. Nat. Phenom., 16(3) (2021).
  • [21] I. Lengyel, I.R. Epstein, Modeling of Turing structures in the chlorite iodide-malonic acid-starch reaction system, Science, 251 (1991), 650-652.
  • [22] I. Lengyel, I.R. Epstein, A chemical approach to designing Turing patterns in reaction-diffusion system, Proc. Nati. Acad. Sci USA, 89(9) (1992), 3977-3979.
  • [23] F. Yi, J. Wei, J. Shi, Diffusion-driven instability and bifurcation in the Lengyel–Epstein system, Nonlinear Anal. Real World Appl., 9(3) (2008), 1038-1051
  • [24] C. Çelik, H., Merdan, Hopf bifurcation analysis of a system of coupled delayed-differential equations, Appl. Math. Comput., 219 (2013), 6605-6617.
  • [25] B.D. Hassard, N.D. Kazarinoff, Y.H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press;1981.
  • [26] D. Mansouri, S. Abdelmalek, S. Bendoukha, On the asymptotic stability of the time-fractional Lengyel-Epstein system, Comput. Math. Appl., 78(5) (2019), 1415-1430.
  • [27] I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer Berlin; 2011.
  • [28] K. Baisad, S. Moonchai, Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator-prey model with Allee effect and Holling type-III functional response, Adv. Differ. Equ., 2018 (2018), 82.
  • [29] W. Deng, C. Li, J. Lu, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48(4) (2009), 409-416.
  • [30] Z. Wang, X. Wang, X. Stability and Hopf Bifurcation analysis of a fractional-order epidemic model with time delay, Math. Probl. Eng. 2018 (2018), 2308245.
  • [31] K. Diethelm, N.J. Ford, A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002) 3-22.
  • [32] S. Bhalekar, V.A. Daftardar-Gejji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calc. Appl., 1(5) (2011), 1-9.

Dynamical Analysis of a Local Lengley-Epstein System Coupled with Fractional Delayed Differential Equations

Year 2023, Volume: 6 Issue: 2, 56 - 64, 07.08.2023
https://doi.org/10.33187/jmsm.1222532

Abstract

We consider a system of fractional delayed differential equations. The ordinary differential version of the system without delay is introduced in the Lengyel-Epstein reaction-diffusion system. We evaluate the system with and without delay and explore the stability of the unique positive equilibrium. We also prove the existence of Hopf bifurcation for both cases. Furthermore, the impacts of Caputo fractional order parameter and time delay parameter on the dynamics of the system are investigated with numerical simulations. It is also concluded that for different values of time delay parameter, the decreament of the Caputo fractional order parameter has opposite effects on the system in terms of stability.

References

  • [1] H. Esmonde, S. Holm, Fractional derivative modelling of adhesive cure, Appl. Math. Model., 77(2) (2020), 1041-1053. doi.org/10.1016/j.apm.2019.08.021
  • [2] B. Jamil, M.S. Anwar, A. Rasheed, M. Irfan, MHD Maxwell flow modeled by fractional derivatives with chemical reaction and thermal radiation, Chaos Solitons Fractals, 67 (2020), 512-533.
  • [3] C. Zu, X. Yu, Time fractional Schr¨odinger equation with a limit based fractional derivative, Chaos Solitons Fractals, 157 (2022), 111941.
  • [4] J.L. Echenaus´ıa-Monroy, H.E. Gilardi-Vel´azquez, R. Jaimes-Re´ategui, V. Aboites, G. Huerta-Cuellar, A physical interpretation of fractional-orderderivatives in a jerk system: Electronic approach, Chaos Solitons Fractals, 90 (2020), 105413.
  • [5] C.M.A. Pinto, J.T. Machado, Fractional model for malaria transmission under control strategies, Comput. Math. Appl., 66(5) (2013), 908–916.
  • [6] E. Balcı, I. Ozturk, S. Kartal, Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative, Chaos Solitons Fractals, 123 (2019), 43-51.
  • [7] M.B. Ghori, P.A. Naik, J. Zu, Z. Eskandari, M. Naik, Global dynamics and bifurcation analysis of a fractional- order SEIR epidemic model with saturation incidence rate, Math. Meth. Appl. Sci., 45(7) (2022), 3665– 3688.
  • [8] P.A. Naik, M. Ghoreishi, J. Zu, Approximate solution of a nonlinear fractional-order HIV model using homotopy analysis method, Int. J. Numer. Anal. Model., 19(1) (2022), 52-84.
  • [9] P.A. Naik, K.M. Owolabi, M. Yavuz, M, J. Zu, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos Solitons Fractals, 140 (2020), 110272.
  • [10] P.F. Qu, Q.Z. Zhu, Y.F. Sun, Elastoplastic modelling of mechanical behavior of rocks with fractional-order plastic flow, Int. J. Mech. Sci., 163 (2019), 105102.
  • [11] C. Huang, J. Cao, M. Xiao, A. Alsaedi, T. Hayat, Bifurcations in a delayed fractional complex-valued neural network, Appl. Math. Comput., 292 (2017), 210-227.
  • [12] V.E. Tarasov, No nonlocality. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 157-163.
  • [13] B. Barman, B. Ghosh, B. Explicit impacts of harvesting in delayed predator-prey models, Chaos Solitons Fractals, 122 (2019), 213-228.
  • [14] J. Cermak, J, Hornicek, T. Kisela, T. Stability regions for fractional differential systems with a time delay, Commun. Nonlinear Sci. Numer. Simul., 1(3) (2016), 108-123.
  • [15] S. Liu, R. Yang, X.F. Zhou, W. Jiang, X. Li, X.W. Zhao, Stability analysis of fractional delayed equations and its applications on consensus of multi-agent systems, Commun. Nonlinear Sci. Numer. Simul., 73 (2016), 351-362.
  • [16] M. Lazarevic, Stability and stabilization of fractional order time-delay systems, Sci. Tech. Rev., 61(1) (2011), 31-44.
  • [17] X. Li, R. Wu, Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system, Nonlinear Dyn., 78(1) (2014), 279-288.
  • [18] H. Li, C. Huang, T. Li, Dynamic complexity of a fractional-order predator–prey system with double delays, Phys. A, 526 (2019), 120852.
  • [19] J. Alidousti, M.M. Ghahfarokhi, Stability and bifurcation for time delay fractional predator prey system by incorporating the dispersal of prey, Appl. Math. Model., 72 (2019), 385-402.
  • [20] E. Balcı, I. Ozturk, S. Kartal, Comparison of dynamical behavior between fractional order delayed and discrete conformable fractional order tumor-immune system, Math. Model. Nat. Phenom., 16(3) (2021).
  • [21] I. Lengyel, I.R. Epstein, Modeling of Turing structures in the chlorite iodide-malonic acid-starch reaction system, Science, 251 (1991), 650-652.
  • [22] I. Lengyel, I.R. Epstein, A chemical approach to designing Turing patterns in reaction-diffusion system, Proc. Nati. Acad. Sci USA, 89(9) (1992), 3977-3979.
  • [23] F. Yi, J. Wei, J. Shi, Diffusion-driven instability and bifurcation in the Lengyel–Epstein system, Nonlinear Anal. Real World Appl., 9(3) (2008), 1038-1051
  • [24] C. Çelik, H., Merdan, Hopf bifurcation analysis of a system of coupled delayed-differential equations, Appl. Math. Comput., 219 (2013), 6605-6617.
  • [25] B.D. Hassard, N.D. Kazarinoff, Y.H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press;1981.
  • [26] D. Mansouri, S. Abdelmalek, S. Bendoukha, On the asymptotic stability of the time-fractional Lengyel-Epstein system, Comput. Math. Appl., 78(5) (2019), 1415-1430.
  • [27] I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer Berlin; 2011.
  • [28] K. Baisad, S. Moonchai, Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator-prey model with Allee effect and Holling type-III functional response, Adv. Differ. Equ., 2018 (2018), 82.
  • [29] W. Deng, C. Li, J. Lu, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48(4) (2009), 409-416.
  • [30] Z. Wang, X. Wang, X. Stability and Hopf Bifurcation analysis of a fractional-order epidemic model with time delay, Math. Probl. Eng. 2018 (2018), 2308245.
  • [31] K. Diethelm, N.J. Ford, A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002) 3-22.
  • [32] S. Bhalekar, V.A. Daftardar-Gejji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calc. Appl., 1(5) (2011), 1-9.
There are 32 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ercan Balcı 0000-0002-8530-7073

Publication Date August 7, 2023
Submission Date December 21, 2022
Acceptance Date April 13, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Balcı, E. (2023). Dynamical Analysis of a Local Lengley-Epstein System Coupled with Fractional Delayed Differential Equations. Journal of Mathematical Sciences and Modelling, 6(2), 56-64. https://doi.org/10.33187/jmsm.1222532
AMA Balcı E. Dynamical Analysis of a Local Lengley-Epstein System Coupled with Fractional Delayed Differential Equations. Journal of Mathematical Sciences and Modelling. August 2023;6(2):56-64. doi:10.33187/jmsm.1222532
Chicago Balcı, Ercan. “Dynamical Analysis of a Local Lengley-Epstein System Coupled With Fractional Delayed Differential Equations”. Journal of Mathematical Sciences and Modelling 6, no. 2 (August 2023): 56-64. https://doi.org/10.33187/jmsm.1222532.
EndNote Balcı E (August 1, 2023) Dynamical Analysis of a Local Lengley-Epstein System Coupled with Fractional Delayed Differential Equations. Journal of Mathematical Sciences and Modelling 6 2 56–64.
IEEE E. Balcı, “Dynamical Analysis of a Local Lengley-Epstein System Coupled with Fractional Delayed Differential Equations”, Journal of Mathematical Sciences and Modelling, vol. 6, no. 2, pp. 56–64, 2023, doi: 10.33187/jmsm.1222532.
ISNAD Balcı, Ercan. “Dynamical Analysis of a Local Lengley-Epstein System Coupled With Fractional Delayed Differential Equations”. Journal of Mathematical Sciences and Modelling 6/2 (August 2023), 56-64. https://doi.org/10.33187/jmsm.1222532.
JAMA Balcı E. Dynamical Analysis of a Local Lengley-Epstein System Coupled with Fractional Delayed Differential Equations. Journal of Mathematical Sciences and Modelling. 2023;6:56–64.
MLA Balcı, Ercan. “Dynamical Analysis of a Local Lengley-Epstein System Coupled With Fractional Delayed Differential Equations”. Journal of Mathematical Sciences and Modelling, vol. 6, no. 2, 2023, pp. 56-64, doi:10.33187/jmsm.1222532.
Vancouver Balcı E. Dynamical Analysis of a Local Lengley-Epstein System Coupled with Fractional Delayed Differential Equations. Journal of Mathematical Sciences and Modelling. 2023;6(2):56-64.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.