Research Article
BibTex RIS Cite

Unveiling New Exact Solutions of the Complex-Coupled Kuralay System Using the Generalized Riccati Equation Mapping Method

Year 2024, Volume: 7 Issue: 3, 146 - 156, 31.12.2024
https://doi.org/10.33187/jmsm.1475211

Abstract

This examination analyzes the integrable dynamics of induced curves by utilizing the complex-coupled Kuralay system (CCKS). The significance of the coupled complex Kuralay equation lies in its role as an essential model that contributes to the understanding of intricate physical and mathematical concepts, making it a valuable tool in scientific research and applications. The soliton solutions originating from the Kuralay equations are believed to encapsulate cutting-edge research in various essential domains such as optical fibers, nonlinear optics, and ferromagnetic materials. Analytical procedures are operated to derive traveling wave solutions for this model, given that the Cauchy problem cannot be resolved using the inverse scattering transform. This study uses the generalized Riccati equation mapping (GREM) method to search for analytical solutions. This method observes single and combined wave solutions in the shock, complex solitary shock, shock singular, and periodic singular forms. Rational solutions also emerged during the derivation. In addition to the analytical results, numerical simulations of the solutions are presented to enhance comprehension of the dynamic features of the solutions generated. The study's conclusions could provide insightful information about how to solve other nonlinear partial differential equations (NLPDEs). The soliton solutions found in this work provide valuable information on the complex nonlinear problem under investigation. These results provide a foundation for further investigation, making the solutions helpful, manageable, and trustworthy for the future development of intricate nonlinear issues. This study's methodology is reliable, robust, effective, and applicable to various NLPDEs. The Maple software application is used to verify the correctness of all obtained solutions.

Ethical Statement

It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

References

  • [1] E. Yaşar, Y. Yıldırım, A. R. Adem, Perturbed optical solitons with spatio-temporal dispersion in (2+1)-dimensions by extended Kudryashov method, Optik, 158 (2018), 1-14.
  • [2] M. S¸ enol, Abundant solitary wave solutions to the new extended (3+ 1)-dimensional nonlinear evolution equation arising in fluid dynamics, Mod. Phys. Lett. B., (2024) 2450475.
  • [3] A.R. Seadawy, N. Nasreen, S. Althobaiti, S. Sayed, A. Biswas, Soliton solutions of Sasa–Satsuma nonlinear Schrödinger model and construction of modulation instability analysis, Opt. Quantum Electron., 53 (2021), 1-15.
  • [4] C. M. Khalique, O. D. Adeyemo, Soliton solutions, travelling wave solutions and conserved quantities for a three-dimensional soliton equation in plasma physics, Commun. Theor. Phys., 73(12) (2021), 125003.
  • [5] M. Bilal, U. Younas, J. Ren, Dynamics of exact soliton solutions to the coupled nonlinear system using reliable analytical mathematical approaches, Commun. Theor. Phys., 73(8) (2021), 085005.
  • [6] S. Arshed, G. Akram, M. Sadaf, M. Irfan, M. Inc, Extraction of exact soliton solutions of (2+ 1)-dimensional Chaffee-Infante equation using two exact integration techniques, Opt. Quantum Electron., 56(6) (2024), 1-15.
  • [7] M. A. Ullah, K. Rehan, Z. Perveen, M. Sadaf, G. Akram, Soliton dynamics of the KdV-mKdV equation using three distinct exact methods in nonlinear phenomena, Nonlinear Eng., 13(1) (2024), 20220318.
  • [8] M. Bilal, H. Haris, A. Waheed, M. Faheem, The analysis of exact solitons solutions in monomode optical fibers to the generalized nonlinear Schrödinger system by the compatible techniques, Int. J. Math. Comput. Eng., 1(2) (2023), 149-170.
  • [9] A. Ali, J. Ahmad, S. Javed, Exact soliton solutions and stability analysis to (3+1)-dimensional nonlinear Schr¨odinger model, Alex. Eng. J., 76 (2023), 747-756.
  • [10] E. H. Zahran, H. Ahmad, M. Rahaman, R. A. Ibrahim, Soliton solutions in (2+1)-dimensional integrable spin systems: an investigation of the Myrzakulov–Lakshmanan equation-II, Opt. Quantum Electron., 56(5) (2024), 895.
  • [11] W. Ma, S. Bilige, Novel interaction solutions to the (3+1)-dimensional Hirota bilinear equation by bilinear neural network method, Mod. Phys. Lett. B., (2024) 2450240.
  • [12] A. M. Wazwaz, L. Kaur, New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions, Nonlinear Dyn., 97 (2019), 83-94.
  • [13] D. Wang, Y. T. Gao, X. Yu, G. F. Deng, F. Y. Liu, Painlev´e Analysis, Backlund Transformation, Lax Pair, Periodic-and Travelling-Wave Solutions for a Generalized (2+ 1)-Dimensional Hirota–Satsuma–Ito Equation in Fluid Mechanics, Qual. Theory Dyn. Syst., 23(1) (2024) 12.
  • [14] C. M. Khalique, M. Y. T. Lephoko, Conserved vectors and symmetry solutions of the Landau-Ginzburg-Higgs equation of theoretical physics, Commun. Theor. Phys., 76(4) (2024), 045006.
  • [15] A. H. Arnous, A. Biswas, Y. Yildirim, A. J. M. Jawad, L. Moraru, S. Moldovanu, A. S. Alshomrani, Optical solitons for the concatenation model with differential group delay having multiplicate white noise, Ukr. J. Phys. Opt., 25(1) (2024).
  • [16] A. Jawad, A. Biswas, Solutions of resonant nonlinear Schr¨odinger’s equation with exotic non-Kerr law nonlinearities, Al-Rafidain J. Eng. Sci., (2024) 43-50.
  • [17] E. M. Zayed, K. A. Alurrfi, M. Elshater, Y. Yildirim, Dispersive optical solitons with Stochastic Radhakrishnan-Kundu-Lakshmanan equation in Magneto-Optic Waveguides having power law nonlinearity and multiplicative white noise, Ukr. J. Phys. Opt., 25(5) (2024), S1086-S1112.
  • [18] M. A. U. Khan, G. Akram, M. Sadaf, Dynamics of novel exact soliton solutions of concatenation model using effective techniques, Opt. Quantum Electron., 56(3) (2024), 385.
  • [19] M. A. Ullah, K. Rehan, Z. Perveen, M. Sadaf, G. Akram, Soliton dynamics of the KdV–mKdV equation using three distinct exact methods in nonlinear phenomena, Nonlinear Eng., 13(1) (2024), 20220318.
  • [20] G. Akram, M. Sadaf, M.A.U. Khan, Dynamics investigation of the (4+ 1)-dimensional Fokas equation using two effective techniques, Results Phys., 42 (2022) 105994.
  • [21] M. Raheel, A. Zafar, M. R. Ali, Z. Myrzakulova, A. Bekir, R. Myrzakulov, New analytical wave solutions to the M-fractional Kuralay-II equations based on three distinct schemes, (2023).
  • [22] Z. Sagidullayeva, G. Nugmanova, R. Myrzakulov, N. Serikbayev, Integrable Kuralay equations: geometry, solutions and generalizations, Symmetry, 14(7) (2022) 1374.
  • [23] E. H. M. Zahran, Z. Umurzakhova A. Bekir, R. A. Ibrahim, R. Myrzakulov, New diverse types of the soliton arising from the integrable Kuralay equations against its numerical solutions, The Europ. Phys. Journal Plus, 139(11) (2023), 1-18.
  • [24] A. Zafar, M. Raheel, M. R. Ali, Z. Myrzakulova, A. Bekir, R. Myrzakulov, Exact solutions of M-fractional Kuralay equation via three analytical schemes, Symmetry, 15(10) (2023), 1862.
  • [25] W. A. Faridi, M. A. Bakar, Z. Myrzakulova, R. Myrzakulov, A. Akgül, S. M. El Din, The formation of solitary wave solutions and their propagation for Kuralay equation, Results Phys., 52 (2023) 106774.
  • [26] T. Mathanaranjan, Optical soliton, linear stability analysis and conservation laws via multipliers to the integrable Kuralay equation, Optik, 290 (2023), 171266.
  • [27] S. Ali, A. Ullah, S. F. Aldosary, S. Ahmad, S. Ahmad, Construction of optical solitary wave solutions and their propagation for Kuralay system using tanh-coth and energy balance method, Results Phys., 59 (2024), 107556.
  • [28] S. D. Zhu, The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+ 1)-dimensional Boiti-Leon-Pempinelle equation, Chaos, Solitons & Fractals, 37(5) (2008), 1335-1342.
  • [29] N. Ahmed, M. Z. Baber, M. S. Iqbal, A. Annum, S. M. Ali, M. Ali, A. Akg¨ul, S. M. El Din, Analytical study of reaction diffusion Lengyel-Epstein system by generalized Riccati equation mapping method, Scientific Reports, 13(1) (2023), 20033.
  • [30] S. Kumar, M. Niwas, Abundant soliton solutions and different dynamical behaviors of various waveforms to a new (3+1)-dimensional Schrödinger equation in optical fibers, Opt. Quantum Electron., 55(6) (2023), 531.
Year 2024, Volume: 7 Issue: 3, 146 - 156, 31.12.2024
https://doi.org/10.33187/jmsm.1475211

Abstract

References

  • [1] E. Yaşar, Y. Yıldırım, A. R. Adem, Perturbed optical solitons with spatio-temporal dispersion in (2+1)-dimensions by extended Kudryashov method, Optik, 158 (2018), 1-14.
  • [2] M. S¸ enol, Abundant solitary wave solutions to the new extended (3+ 1)-dimensional nonlinear evolution equation arising in fluid dynamics, Mod. Phys. Lett. B., (2024) 2450475.
  • [3] A.R. Seadawy, N. Nasreen, S. Althobaiti, S. Sayed, A. Biswas, Soliton solutions of Sasa–Satsuma nonlinear Schrödinger model and construction of modulation instability analysis, Opt. Quantum Electron., 53 (2021), 1-15.
  • [4] C. M. Khalique, O. D. Adeyemo, Soliton solutions, travelling wave solutions and conserved quantities for a three-dimensional soliton equation in plasma physics, Commun. Theor. Phys., 73(12) (2021), 125003.
  • [5] M. Bilal, U. Younas, J. Ren, Dynamics of exact soliton solutions to the coupled nonlinear system using reliable analytical mathematical approaches, Commun. Theor. Phys., 73(8) (2021), 085005.
  • [6] S. Arshed, G. Akram, M. Sadaf, M. Irfan, M. Inc, Extraction of exact soliton solutions of (2+ 1)-dimensional Chaffee-Infante equation using two exact integration techniques, Opt. Quantum Electron., 56(6) (2024), 1-15.
  • [7] M. A. Ullah, K. Rehan, Z. Perveen, M. Sadaf, G. Akram, Soliton dynamics of the KdV-mKdV equation using three distinct exact methods in nonlinear phenomena, Nonlinear Eng., 13(1) (2024), 20220318.
  • [8] M. Bilal, H. Haris, A. Waheed, M. Faheem, The analysis of exact solitons solutions in monomode optical fibers to the generalized nonlinear Schrödinger system by the compatible techniques, Int. J. Math. Comput. Eng., 1(2) (2023), 149-170.
  • [9] A. Ali, J. Ahmad, S. Javed, Exact soliton solutions and stability analysis to (3+1)-dimensional nonlinear Schr¨odinger model, Alex. Eng. J., 76 (2023), 747-756.
  • [10] E. H. Zahran, H. Ahmad, M. Rahaman, R. A. Ibrahim, Soliton solutions in (2+1)-dimensional integrable spin systems: an investigation of the Myrzakulov–Lakshmanan equation-II, Opt. Quantum Electron., 56(5) (2024), 895.
  • [11] W. Ma, S. Bilige, Novel interaction solutions to the (3+1)-dimensional Hirota bilinear equation by bilinear neural network method, Mod. Phys. Lett. B., (2024) 2450240.
  • [12] A. M. Wazwaz, L. Kaur, New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions, Nonlinear Dyn., 97 (2019), 83-94.
  • [13] D. Wang, Y. T. Gao, X. Yu, G. F. Deng, F. Y. Liu, Painlev´e Analysis, Backlund Transformation, Lax Pair, Periodic-and Travelling-Wave Solutions for a Generalized (2+ 1)-Dimensional Hirota–Satsuma–Ito Equation in Fluid Mechanics, Qual. Theory Dyn. Syst., 23(1) (2024) 12.
  • [14] C. M. Khalique, M. Y. T. Lephoko, Conserved vectors and symmetry solutions of the Landau-Ginzburg-Higgs equation of theoretical physics, Commun. Theor. Phys., 76(4) (2024), 045006.
  • [15] A. H. Arnous, A. Biswas, Y. Yildirim, A. J. M. Jawad, L. Moraru, S. Moldovanu, A. S. Alshomrani, Optical solitons for the concatenation model with differential group delay having multiplicate white noise, Ukr. J. Phys. Opt., 25(1) (2024).
  • [16] A. Jawad, A. Biswas, Solutions of resonant nonlinear Schr¨odinger’s equation with exotic non-Kerr law nonlinearities, Al-Rafidain J. Eng. Sci., (2024) 43-50.
  • [17] E. M. Zayed, K. A. Alurrfi, M. Elshater, Y. Yildirim, Dispersive optical solitons with Stochastic Radhakrishnan-Kundu-Lakshmanan equation in Magneto-Optic Waveguides having power law nonlinearity and multiplicative white noise, Ukr. J. Phys. Opt., 25(5) (2024), S1086-S1112.
  • [18] M. A. U. Khan, G. Akram, M. Sadaf, Dynamics of novel exact soliton solutions of concatenation model using effective techniques, Opt. Quantum Electron., 56(3) (2024), 385.
  • [19] M. A. Ullah, K. Rehan, Z. Perveen, M. Sadaf, G. Akram, Soliton dynamics of the KdV–mKdV equation using three distinct exact methods in nonlinear phenomena, Nonlinear Eng., 13(1) (2024), 20220318.
  • [20] G. Akram, M. Sadaf, M.A.U. Khan, Dynamics investigation of the (4+ 1)-dimensional Fokas equation using two effective techniques, Results Phys., 42 (2022) 105994.
  • [21] M. Raheel, A. Zafar, M. R. Ali, Z. Myrzakulova, A. Bekir, R. Myrzakulov, New analytical wave solutions to the M-fractional Kuralay-II equations based on three distinct schemes, (2023).
  • [22] Z. Sagidullayeva, G. Nugmanova, R. Myrzakulov, N. Serikbayev, Integrable Kuralay equations: geometry, solutions and generalizations, Symmetry, 14(7) (2022) 1374.
  • [23] E. H. M. Zahran, Z. Umurzakhova A. Bekir, R. A. Ibrahim, R. Myrzakulov, New diverse types of the soliton arising from the integrable Kuralay equations against its numerical solutions, The Europ. Phys. Journal Plus, 139(11) (2023), 1-18.
  • [24] A. Zafar, M. Raheel, M. R. Ali, Z. Myrzakulova, A. Bekir, R. Myrzakulov, Exact solutions of M-fractional Kuralay equation via three analytical schemes, Symmetry, 15(10) (2023), 1862.
  • [25] W. A. Faridi, M. A. Bakar, Z. Myrzakulova, R. Myrzakulov, A. Akgül, S. M. El Din, The formation of solitary wave solutions and their propagation for Kuralay equation, Results Phys., 52 (2023) 106774.
  • [26] T. Mathanaranjan, Optical soliton, linear stability analysis and conservation laws via multipliers to the integrable Kuralay equation, Optik, 290 (2023), 171266.
  • [27] S. Ali, A. Ullah, S. F. Aldosary, S. Ahmad, S. Ahmad, Construction of optical solitary wave solutions and their propagation for Kuralay system using tanh-coth and energy balance method, Results Phys., 59 (2024), 107556.
  • [28] S. D. Zhu, The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+ 1)-dimensional Boiti-Leon-Pempinelle equation, Chaos, Solitons & Fractals, 37(5) (2008), 1335-1342.
  • [29] N. Ahmed, M. Z. Baber, M. S. Iqbal, A. Annum, S. M. Ali, M. Ali, A. Akg¨ul, S. M. El Din, Analytical study of reaction diffusion Lengyel-Epstein system by generalized Riccati equation mapping method, Scientific Reports, 13(1) (2023), 20033.
  • [30] S. Kumar, M. Niwas, Abundant soliton solutions and different dynamical behaviors of various waveforms to a new (3+1)-dimensional Schrödinger equation in optical fibers, Opt. Quantum Electron., 55(6) (2023), 531.
There are 30 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Bahadır Kopçasız 0000-0002-6364-3631

Early Pub Date December 29, 2024
Publication Date December 31, 2024
Submission Date April 29, 2024
Acceptance Date December 21, 2024
Published in Issue Year 2024 Volume: 7 Issue: 3

Cite

APA Kopçasız, B. (2024). Unveiling New Exact Solutions of the Complex-Coupled Kuralay System Using the Generalized Riccati Equation Mapping Method. Journal of Mathematical Sciences and Modelling, 7(3), 146-156. https://doi.org/10.33187/jmsm.1475211
AMA Kopçasız B. Unveiling New Exact Solutions of the Complex-Coupled Kuralay System Using the Generalized Riccati Equation Mapping Method. Journal of Mathematical Sciences and Modelling. December 2024;7(3):146-156. doi:10.33187/jmsm.1475211
Chicago Kopçasız, Bahadır. “Unveiling New Exact Solutions of the Complex-Coupled Kuralay System Using the Generalized Riccati Equation Mapping Method”. Journal of Mathematical Sciences and Modelling 7, no. 3 (December 2024): 146-56. https://doi.org/10.33187/jmsm.1475211.
EndNote Kopçasız B (December 1, 2024) Unveiling New Exact Solutions of the Complex-Coupled Kuralay System Using the Generalized Riccati Equation Mapping Method. Journal of Mathematical Sciences and Modelling 7 3 146–156.
IEEE B. Kopçasız, “Unveiling New Exact Solutions of the Complex-Coupled Kuralay System Using the Generalized Riccati Equation Mapping Method”, Journal of Mathematical Sciences and Modelling, vol. 7, no. 3, pp. 146–156, 2024, doi: 10.33187/jmsm.1475211.
ISNAD Kopçasız, Bahadır. “Unveiling New Exact Solutions of the Complex-Coupled Kuralay System Using the Generalized Riccati Equation Mapping Method”. Journal of Mathematical Sciences and Modelling 7/3 (December 2024), 146-156. https://doi.org/10.33187/jmsm.1475211.
JAMA Kopçasız B. Unveiling New Exact Solutions of the Complex-Coupled Kuralay System Using the Generalized Riccati Equation Mapping Method. Journal of Mathematical Sciences and Modelling. 2024;7:146–156.
MLA Kopçasız, Bahadır. “Unveiling New Exact Solutions of the Complex-Coupled Kuralay System Using the Generalized Riccati Equation Mapping Method”. Journal of Mathematical Sciences and Modelling, vol. 7, no. 3, 2024, pp. 146-5, doi:10.33187/jmsm.1475211.
Vancouver Kopçasız B. Unveiling New Exact Solutions of the Complex-Coupled Kuralay System Using the Generalized Riccati Equation Mapping Method. Journal of Mathematical Sciences and Modelling. 2024;7(3):146-5.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.