Research Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 3, 157 - 167, 31.12.2024
https://doi.org/10.33187/jmsm.1595276

Abstract

References

  • [1] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer, New York, 2009.
  • [2] L. I. Pitarbarg, A. G. Ostrovskii, Advection and Diffusion in Random Media, Springer, New York, 1997.
  • [3] Y. Khan, Q. Wu, Homotopy perturbation transform method for nonlinear equations using He’s polynomials, Comput. Math. Appl., 61(8) (2011), 1963-1967.
  • [4] B. B. Sanugi, D. J. Evans, A Fourier series method for the numerical solution of the nonlinear advection problem, Appl. Math. Lett., 1(4) (1988), 385-389.
  • [5] A. M. Wazwaz, A new approach to the nonlinear advection problem: An application of the decomposition method, Appl. Math. Comput., 72(2-3) (1995), 175-181.
  • [6] C. R. Molenkamp, Accuracy of finite-difference methods applied to the advection equation, J. Appl. Meteor. Climatol., 7 (1968), 160-167.
  • [7] Y. Khan, F. Austin, Application of the Laplace decomposition method to nonlinear homogeneous and non-homogenous advection equations, Zeitschrift für Naturforschung A, 65(10) (2010), 849-853.
  • [8] K. S. Nisar, J. Ali, M. K. Mahmood, D. Ahmad, S. Ali, Hybrid evolutionary pad ´ e approximation approach for numerical treatment of nonlinear partial differential equations, Alexandria Engineering Journal, 60(5) (2021), 4411-4421.
  • [9] K. N. I. Ara, Md. M. Rahaman, Md. S. Alam, Numerical solution of advection diffusion equation using semi-discretization scheme, Appl. Math., 12 (2021), 1236-1247.
  • [10] T. Cosgun, M. Sari, A novel method to investigate nonlinear advection-diffusion processes, J. Comput. Appl. Math., 425 (2023), 115057.
  • [11] A. Alkan, Analysis of fractional advection equation with improved homotopy analysis method, OKU Journal of The Institute of Science and Technology, 7(3) (2024), 1215-1229.
  • [12] I. A. Mirza, M. S. Akram, N. A. Shah, W. Imtiaz, J. D. Chung, Analytical solutions to the advection-diffusion equation with Atangana-Baleanu time-fractional derivative and a concentrated loading, Alexandria Engineering Journal, 60(1) (2021), 1199-1208.
  • [13] F. Mirzaee, K. Sayevand, S. Rezaei, N. Samadyar, Finite difference and spline approximation for solving fractional stochastic advection-diffusion equation, Iran. J. Sci. Technol. Trans. A Sci., 45 (2021), 607-617.
  • [14] S. Zaremba, Sur le calcul num´erique des fonctions demand´ees dans le probl´eme de Dirichlet et le probleme hydrodynamique, Bulletin International de l’Acad´emie des Sciences de Cracovie, 908 (1908), 125-195.
  • [15] N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc., 68 (1950), 337-404.
  • [16] L. Schwartz, Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associes (noyaux reproduisants), J. Anal. Math., 13 (1964), 115-256.
  • [17] S. Saitoh, Y. Sawano, Theory of Reproducing Kernels and Applications, Springer, Singapore, 2016.
  • [18] O. A. Arqub, M. A. Smadi, Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlev´e equations in Hilbert space, Chaos Solitons Fractals, 117 (2018), 161-167.
  • [19] O. A. Arqub, Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis, Fund. Inform., 166(2) (2019), 111-137.
  • [20] O. A. Arqub, M. Smadi, N. Shawagfeh, Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method, Appl. Math. Comput., 219(17) (2013), 8938-8948.
  • [21] O. A. Arqub, B. Maayah, Numerical solutions of integro differential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator, Chaos Solitons Fractals, 117 (2018), 117-124.
  • [22] G. Akram, H. Rehman, Numerical solution of eighth order boundary value problems in reproducing kernel space, Numer. Algorithms, 62 (2013), 527-540.
  • [23] M. G., Sakar, A. Akg¨ul, D. Baleanu, On solutions of fractional Riccati differential equations, Adv. Difference Equ., 39 (2017), 1-10.
  • [24] A. Akgül, M. Inc, A. Kilicman, D. Baleanu, A new approach for one-dimensional sine-Gordon equation, Adv. Difference Equ., 8 (2016), 1-20.
  • [25] M. Mohammadi, R. Mokhtari, A reproducing kernel method for solving a class of nonlinear systems of PDEs, Math. Model. Anal., 19(2) (2014), 180-198.
  • [26] W. Jiang, Y. Lin, Approximate solution of the fractional advection-dispersion equation, Comput. Phys. Commun., 181(3) (2010), 557-561.
  • [27] W. Jiang, Y. Lin, Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space, Commun. Nonlinear Sci. Numer. Simul., 16(9) (2011), 3639-3645.
  • [28] H. Yao, Reproducing kernel method for the solution of nonlinear hyperbolic telegraph equation with an integral condition, Numer. Methods Partial Differential Equations, 27(4) (2011), 867-886.
  • [29] Y. Lin, Y. Zhou, Solving the reaction-diffusion equations with nonlocal boundary conditions based on reproducing kernel space, Numer. Methods Partial Differential Equations, 25(6) (2004), 1468-1481.
  • [30] O. A. Arqub, M. A. Smadi, Numerical algorithm for solving time-fractional partial integro differential equations subject to initial and Dirichlet boundary conditions, Numer. Methods Partial Differential Equations, 34(5) (2018), 1577-1597.
  • [31] Y. Wang, M. Du, F. Tan, Z. Li, T. Nie, Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions, Appl. Math. Comput., 219(11) (2013), 5918–5925.
  • [32] O. A. Arqub, Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space, Numer. Methods Partial Differential Equations, 34(5) (2018), 1759-1780.
  • [33] M. G. Sakar, O. Saldır, A. Akg¨ul, A novel technique for fractional Bagley–Torvik equation, Proc. Nat. Acad. Sci. India Sect. A, 89 (2019), 539-545.
  • [34] M. Mohammadi, F. S. Zafarghandi, E. Babolian, S. Jvadi, A local reproducing kernel method accompanied by some different edge improvement techniques: Application to the Burgers’ equation, Iran. J. Sci. Technol. Trans. A Sci., 42 (2018), 857-871.
  • [35] D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444-462.
  • [36] M. G. Cui, Y. Z. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science Publisher, New York, 2009.
  • [37] M. G. Sakar, O. Saldır, F. Erdogan, An iterative approximation for time-fractional Cahn-Allen equation with reproducing kernel method, Computational and Applied Mathematics, 37 (2018), 5951-5964.
  • [38] M. G. Sakar, O. Saldır, A. Akgül, Numerical solution of fractional Bratu type equations with Legendre reproducing kernel method, Int. J. Appl. Comput. Math., 4(126) (2018), 1-14.

Numerical Solution of Nonlinear Advection Equation Using Reproducing Kernel Method

Year 2024, Volume: 7 Issue: 3, 157 - 167, 31.12.2024
https://doi.org/10.33187/jmsm.1595276

Abstract

In this study, an iterative approximation is proposed by using the reproducing kernel method (RKM) for the nonlinear advection equation. To apply the iterative RKM, specific reproducing kernel spaces are defined and their kernel functions are presented. The proposed method requires homogenising the initial or boundary conditions of the problem under consideration. After homogenising the initial condition of the advection equation, a linear operator selection is made, and then the approximate solution is constructed using orthonormal basis functions in serial form. Convergence analysis of the approximate solution is demonstrated through the lemma and theorem. Numerical outcomes are provided in the form of graphics and tables to show the efficiency and accuracy of the presented method.

References

  • [1] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer, New York, 2009.
  • [2] L. I. Pitarbarg, A. G. Ostrovskii, Advection and Diffusion in Random Media, Springer, New York, 1997.
  • [3] Y. Khan, Q. Wu, Homotopy perturbation transform method for nonlinear equations using He’s polynomials, Comput. Math. Appl., 61(8) (2011), 1963-1967.
  • [4] B. B. Sanugi, D. J. Evans, A Fourier series method for the numerical solution of the nonlinear advection problem, Appl. Math. Lett., 1(4) (1988), 385-389.
  • [5] A. M. Wazwaz, A new approach to the nonlinear advection problem: An application of the decomposition method, Appl. Math. Comput., 72(2-3) (1995), 175-181.
  • [6] C. R. Molenkamp, Accuracy of finite-difference methods applied to the advection equation, J. Appl. Meteor. Climatol., 7 (1968), 160-167.
  • [7] Y. Khan, F. Austin, Application of the Laplace decomposition method to nonlinear homogeneous and non-homogenous advection equations, Zeitschrift für Naturforschung A, 65(10) (2010), 849-853.
  • [8] K. S. Nisar, J. Ali, M. K. Mahmood, D. Ahmad, S. Ali, Hybrid evolutionary pad ´ e approximation approach for numerical treatment of nonlinear partial differential equations, Alexandria Engineering Journal, 60(5) (2021), 4411-4421.
  • [9] K. N. I. Ara, Md. M. Rahaman, Md. S. Alam, Numerical solution of advection diffusion equation using semi-discretization scheme, Appl. Math., 12 (2021), 1236-1247.
  • [10] T. Cosgun, M. Sari, A novel method to investigate nonlinear advection-diffusion processes, J. Comput. Appl. Math., 425 (2023), 115057.
  • [11] A. Alkan, Analysis of fractional advection equation with improved homotopy analysis method, OKU Journal of The Institute of Science and Technology, 7(3) (2024), 1215-1229.
  • [12] I. A. Mirza, M. S. Akram, N. A. Shah, W. Imtiaz, J. D. Chung, Analytical solutions to the advection-diffusion equation with Atangana-Baleanu time-fractional derivative and a concentrated loading, Alexandria Engineering Journal, 60(1) (2021), 1199-1208.
  • [13] F. Mirzaee, K. Sayevand, S. Rezaei, N. Samadyar, Finite difference and spline approximation for solving fractional stochastic advection-diffusion equation, Iran. J. Sci. Technol. Trans. A Sci., 45 (2021), 607-617.
  • [14] S. Zaremba, Sur le calcul num´erique des fonctions demand´ees dans le probl´eme de Dirichlet et le probleme hydrodynamique, Bulletin International de l’Acad´emie des Sciences de Cracovie, 908 (1908), 125-195.
  • [15] N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc., 68 (1950), 337-404.
  • [16] L. Schwartz, Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associes (noyaux reproduisants), J. Anal. Math., 13 (1964), 115-256.
  • [17] S. Saitoh, Y. Sawano, Theory of Reproducing Kernels and Applications, Springer, Singapore, 2016.
  • [18] O. A. Arqub, M. A. Smadi, Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlev´e equations in Hilbert space, Chaos Solitons Fractals, 117 (2018), 161-167.
  • [19] O. A. Arqub, Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis, Fund. Inform., 166(2) (2019), 111-137.
  • [20] O. A. Arqub, M. Smadi, N. Shawagfeh, Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method, Appl. Math. Comput., 219(17) (2013), 8938-8948.
  • [21] O. A. Arqub, B. Maayah, Numerical solutions of integro differential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator, Chaos Solitons Fractals, 117 (2018), 117-124.
  • [22] G. Akram, H. Rehman, Numerical solution of eighth order boundary value problems in reproducing kernel space, Numer. Algorithms, 62 (2013), 527-540.
  • [23] M. G., Sakar, A. Akg¨ul, D. Baleanu, On solutions of fractional Riccati differential equations, Adv. Difference Equ., 39 (2017), 1-10.
  • [24] A. Akgül, M. Inc, A. Kilicman, D. Baleanu, A new approach for one-dimensional sine-Gordon equation, Adv. Difference Equ., 8 (2016), 1-20.
  • [25] M. Mohammadi, R. Mokhtari, A reproducing kernel method for solving a class of nonlinear systems of PDEs, Math. Model. Anal., 19(2) (2014), 180-198.
  • [26] W. Jiang, Y. Lin, Approximate solution of the fractional advection-dispersion equation, Comput. Phys. Commun., 181(3) (2010), 557-561.
  • [27] W. Jiang, Y. Lin, Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space, Commun. Nonlinear Sci. Numer. Simul., 16(9) (2011), 3639-3645.
  • [28] H. Yao, Reproducing kernel method for the solution of nonlinear hyperbolic telegraph equation with an integral condition, Numer. Methods Partial Differential Equations, 27(4) (2011), 867-886.
  • [29] Y. Lin, Y. Zhou, Solving the reaction-diffusion equations with nonlocal boundary conditions based on reproducing kernel space, Numer. Methods Partial Differential Equations, 25(6) (2004), 1468-1481.
  • [30] O. A. Arqub, M. A. Smadi, Numerical algorithm for solving time-fractional partial integro differential equations subject to initial and Dirichlet boundary conditions, Numer. Methods Partial Differential Equations, 34(5) (2018), 1577-1597.
  • [31] Y. Wang, M. Du, F. Tan, Z. Li, T. Nie, Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions, Appl. Math. Comput., 219(11) (2013), 5918–5925.
  • [32] O. A. Arqub, Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space, Numer. Methods Partial Differential Equations, 34(5) (2018), 1759-1780.
  • [33] M. G. Sakar, O. Saldır, A. Akg¨ul, A novel technique for fractional Bagley–Torvik equation, Proc. Nat. Acad. Sci. India Sect. A, 89 (2019), 539-545.
  • [34] M. Mohammadi, F. S. Zafarghandi, E. Babolian, S. Jvadi, A local reproducing kernel method accompanied by some different edge improvement techniques: Application to the Burgers’ equation, Iran. J. Sci. Technol. Trans. A Sci., 42 (2018), 857-871.
  • [35] D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444-462.
  • [36] M. G. Cui, Y. Z. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science Publisher, New York, 2009.
  • [37] M. G. Sakar, O. Saldır, F. Erdogan, An iterative approximation for time-fractional Cahn-Allen equation with reproducing kernel method, Computational and Applied Mathematics, 37 (2018), 5951-5964.
  • [38] M. G. Sakar, O. Saldır, A. Akgül, Numerical solution of fractional Bratu type equations with Legendre reproducing kernel method, Int. J. Appl. Comput. Math., 4(126) (2018), 1-14.
There are 38 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Onur Saldır 0000-0002-5292-9458

Early Pub Date December 31, 2024
Publication Date December 31, 2024
Submission Date December 2, 2024
Acceptance Date December 31, 2024
Published in Issue Year 2024 Volume: 7 Issue: 3

Cite

APA Saldır, O. (2024). Numerical Solution of Nonlinear Advection Equation Using Reproducing Kernel Method. Journal of Mathematical Sciences and Modelling, 7(3), 157-167. https://doi.org/10.33187/jmsm.1595276
AMA Saldır O. Numerical Solution of Nonlinear Advection Equation Using Reproducing Kernel Method. Journal of Mathematical Sciences and Modelling. December 2024;7(3):157-167. doi:10.33187/jmsm.1595276
Chicago Saldır, Onur. “Numerical Solution of Nonlinear Advection Equation Using Reproducing Kernel Method”. Journal of Mathematical Sciences and Modelling 7, no. 3 (December 2024): 157-67. https://doi.org/10.33187/jmsm.1595276.
EndNote Saldır O (December 1, 2024) Numerical Solution of Nonlinear Advection Equation Using Reproducing Kernel Method. Journal of Mathematical Sciences and Modelling 7 3 157–167.
IEEE O. Saldır, “Numerical Solution of Nonlinear Advection Equation Using Reproducing Kernel Method”, Journal of Mathematical Sciences and Modelling, vol. 7, no. 3, pp. 157–167, 2024, doi: 10.33187/jmsm.1595276.
ISNAD Saldır, Onur. “Numerical Solution of Nonlinear Advection Equation Using Reproducing Kernel Method”. Journal of Mathematical Sciences and Modelling 7/3 (December 2024), 157-167. https://doi.org/10.33187/jmsm.1595276.
JAMA Saldır O. Numerical Solution of Nonlinear Advection Equation Using Reproducing Kernel Method. Journal of Mathematical Sciences and Modelling. 2024;7:157–167.
MLA Saldır, Onur. “Numerical Solution of Nonlinear Advection Equation Using Reproducing Kernel Method”. Journal of Mathematical Sciences and Modelling, vol. 7, no. 3, 2024, pp. 157-6, doi:10.33187/jmsm.1595276.
Vancouver Saldır O. Numerical Solution of Nonlinear Advection Equation Using Reproducing Kernel Method. Journal of Mathematical Sciences and Modelling. 2024;7(3):157-6.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.