Research Article
BibTex RIS Cite
Year 2024, , 29 - 37, 30.08.2024
https://doi.org/10.32739/uha.jnbs.11.1538964

Abstract

References

  • 1. Katsuki, A., Fujino, Y., Le Nguyen, H. and Yoshimura, R. 2018. Do Benzodiazepines Plus Fluvoxamine Cause a Rapid Increase in Serum Brain-derived Neurotrophic Factor or Clinical Improvement in Major Depressive Disorder Patients? Neuropsychiatry, 8(1), pp.11-16.
  • 2. Griffin, C.E., Kaye, A.M., Bueno, F.R. and Kaye, A.D. 2013. Benzodiazepine pharmacology and central nervous system–mediated effects. Ochsner Journal, 13(2), pp.214-223.
  • 3. Ramirez, K., Niraula, A. and Sheridan, J.F., 2016. GABAergic modulation with classical benzodiazepines prevent stress-induced neuro-immune dysregulation and behavioral alterations. Brain, behavior, and immunity, 51, pp.154-168.
  • 4. Gudin, J.A., Mogali, S., Jones, J.D., Comer, S.D. 2013. Risks, management, and monitoring of combination opioid, benzodiazepines, and/or alcohol use. Postgrad. Med. 125, 115–130.
  • 5. Elgarf, A.A., Siebert, D.C., Steudle, F., Draxler, A., Li, G., Huang, S., Cook, J.M., Ernst, M. and Scholze, P. 2018. Different Benzodiazepines Bind with Distinct Binding Modes to GABAA Receptors. ACS chemical biology, 13(8), pp.2033-2039.
  • 6. Kurko, T., Saastamoinen, L.K., Tuulio‐Henriksson, A., Taiminen, T., Tiihonen, J., Airaksinen, M. and Hietala, J. 2018. Trends in the long‐term use of benzodiazepine anxiolytics and hypnotics: A national register study for 2006 to 2014. Pharmacoepidemiology and Drug Safety, 27(6), pp.674-682
  • 7. Penninx, BWJH., Pines, D. S., Holmes, E. A., and Reif, A. 2021. Anxiety disorders. Lancet, 397:914-927.
  • 8. Nardi, A. E., and Quagliato, L. A. 2022. Benzodiazepines Are Efficacious and Safe for Long-Term Use: Clinical Research Data and More than Sixty Years in the Market. Psychother Psychoso, 91 (5): 300–303. https://doi.org/10.1159/000524730.
  • 9. Dubovsky, S.L., Marshall, D. 2022. Benzodiazepines remain important therapeutic options in psychiatric practice. Psychother Psychosom, 1–28. https://doi.org/10.1159/000524400.
  • 10. Silberman, E., Balon, R., Starcevic, V. et al. 2021. Benzodiazepines: it’s time to return the evidence. Br J Psychiatry, 218:125-127.
  • 11. Hirschtritt, M.E., Olfson, M.A., and Kroenke, K. 2021. Balancing the risks and benefits of benzodiazepines. JAMA, 328:347-348.
  • 12. Prashant, T., Jeffrey, C.L.L., Stephen, A., and Tarun, B. 2021. Benzodiazepines for the long-term treatment of anxiety disorders? Lancet, 398:119-120.
  • 13. Huhtaniska, S., Jääskeläinen, E., Heikka, T., Moilanen, J.S., Lehtiniemi, H., Tohka, J., Manjón, J.V., Coupé, P., Björnholm, L., Koponen, H. and Veijola, J., 2017. Long-term antipsychotic and benzodiazepine use and brain volume changes in schizophrenia: The Northern Finland Birth Cohort 1966 study. Psychiatry Research: Neuroimaging, 266, pp.73-82.
  • 14. Afzal, A. and Kiyatkin, E.A. 2019. Interactions of benzodiazepines with heroin: Respiratory depression, temperature effects, and behavior. Neuropharmacology, 158, p.107677.
  • 15. Imam A., Teslimat, A.J., Victoria, W., Samson, C., Aboyeji, O.L., Olatunbosun, O., Sheu-Tijani, S.T. and Saliu, A.M. 2019. Nigella sativa oil protected the hippocampus against Acetyl cholinesterase and oxidative dysfunctions-driven impaired working memory in rats. Bulletin of Faculty of Pharmacy, Cairo University, 57(1), pp.25-34.
  • 16. Imam, A., Sulaiman, N.A., Oyewole, A.L., Amin, A., Shittu, S.T.T. and Ajao, M.S. 2018. Pro-Neurogenic and Antioxidant Efficacy of Nigella sativa Oil Reduced Vulnerability Cholinesterase Dysfunction and Disruption in Amygdala-Dependent Behaviours in Chlorpyrifos Exposure. Journal of Krishna Institute of Medical Sciences (JKIMSU), 7(3).
  • Misra, H.P., and Fridovich, I. 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247(10):3170-3175.
  • 17. Ha, S.K., Shobha, D., Moon, E., Chari, M.A., Mukkanti, K., Kim, S.H., Ahn, K.H. and Kim, S.Y. 2010. Anti-neuroinflammatory activity of 1, 5-benzodiazepine derivatives. Bioorganic & medicinal chemistry letters, 20(13), pp.3969-3971.
  • 18. Borowicz-Reutt, K.K. and Czuczwar, S.J. 2020. Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacological Reports, pp.1-9.
  • 19. González-Fraguela, M.E., Blanco, L., Fernández, C.I., Lorigados, L., Serrano, T. and Fernández, J.L. 2018. Glutathione depletion: Starting point of brain metabolic stress, neuroinflammation and cognitive impairment in rats. Brain Research Bulletin, 137, pp.120-131.
  • 20. Huang, W.J., Zhang, X.I.A. and Chen, W.W. 2016. Role of oxidative stress in Alzheimer's disease. Biomedical reports, 4(5), pp.519-522. 21. Lawal, A.T., Sharafadeen, A.O., and Akinola, O.B. 2023. Neuromorphological and Biochemical Effects of Co-exposure to Bisphenol A and Cadmium in Insulin-resistant Rats. The Journal of Neurobehavioral Sciences, 10(3): p 74-81, DOI: 10.4103/jnbs.jnbs_14_23
  • 22. Zhang, Y., Wang, Q., Chen, H., Liu, X., Lv, K., Wang, T., Wang, Y., Ji, G., Cao, H., Kan, G. and Li, Y. 2018. Involvement of cholinergic dysfunction and oxidative damage in the effects of simulated weightlessness on learning and memory in rats. BioMed research international, doi:10.1155/2018/2547532.
  • 23. Pang, X., Panee, J., Liu, X., Berry, M.J., Chang, S.L. and Chang, L. 2013. Regional variations of antioxidant capacity and oxidative stress responses in HIV-1 transgenic rats with and without methamphetamine administration. Journal of Neuroimmune Pharmacology, 8(3), pp.691-704.
  • 24. O’Malley, A., O’Connell, C., Regan, C.M. 1998. Ultrastructural analysisreveals avoidance conditioning to induce a transient increase in hippocampal dentate spine density in the 6-hour post-training period. Neuroscience, 87: 607–613.
  • 25. Braidy, N. and Jugder, B.E. 2019. The precursor to glutathione (GSH), γ-glutamylcysteine (GGC), can Ameliorate Oxidative Damage and Neuroinflammation Induced by Amyloid- beta Oligomers in Primary Adult Human Brain Cells. Frontiers in aging neuroscience, 11, p.177.
  • 26. Koza, L. and Linseman, D.A. 2019. Glutathione precursors shield the brain from trauma. Neural regeneration research, 14(10), p.1701.
  • 27. Pang, X. and Panee, J. 2014. Roles of glutathione in antioxidant defense, inflammation, and neuron differentiation in the thalamus of HIV-1 transgenic rats. Journal of Neuroimmune Pharmacology, 9(3), pp.413-423.
  • 28. Sriram, K. and O’Callaghan, J.P. 2007. Divergent roles for tumor necrosis factor-α in the brain. Journal of Neuroimmune Pharmacology, 2(2), pp.140-153.
  • 29. Porro, C., Cianciulli, A. and Panaro, M.A. 2020. The Regulatory Role of IL-10 in Neurodegenerative Diseases. Biomolecules, 10(7), p.1017.
  • 30. Burmeister, A.R. and Marriott, I. 2018. The Interleukin-10 family of cytokines and their role in the CNS. Frontiers in cellular neuroscience, 12, p.458.
  • 31. Garcia, J.M., Stillings, S.A., Leclerc, J.L., Phillips, H., Edwards, N.J., Robicsek, S.A., Hoh, B.L., Blackburn, S. and Doré, S. 2017. Role of interleukin-10 in acute brain injuries. Frontiers in neurology, 8, p.244.
  • 32. Silva-Rodríguez, J., García-Varela, L., López-Arias, E., Domínguez-Prado, I., Cortés, J., Pardo-Montero, J., Fernández-Ferreiro, A., Ruibal, Á., Sobrino, T. and Aguiar, P. 2016. Impact of benzodiazepines on brain FDG-PET quantification after single-dose and chronic administration in rats. Nuclear medicine and biology, 43(12), pp.827-834.
  • 33. Steenbergen, L., Sellaro, R., Stock, A.K., Beste, C. and Colzato, L.S. 2015. γ-Aminobutyric acid (GABA) administration improves action selection processes: a randomised controlled trial. Scientific reports, 5(1), pp.1-7.
  • 34. Yoto, A., Murao, S., Motoki, M., Yokoyama, Y., Horie, N., Takeshima, K., Masuda, K., Kim, M. and Yokogoshi, H. 2012. Oral intake of γ-aminobutyric acid affects mood and activities of central nervous system during stressed condition induced by mental tasks. Amino Acids, 43(3), pp.1331-1337.
  • 35. Ano, Y., Ohya, R., Yamazaki, T., Takahashi, C., Taniguchi, Y., Kondo, K., Takashima, A., Uchida, K. and Nakayama, H. 2020. Hop bitter acids containing a β-carbonyl moiety prevent inflammation-induced cognitive decline via the vagus nerve and noradrenergic system. Scientific reports, 10(1), pp.1-13.
  • 36. Kalinin, S., Gavrilyuk, V., Polak, P.E., Vasser, R., Zhao, J., Heneka, M.T. and Feinstein, D.L. 2007. Noradrenaline deficiency in brain increases β-amyloid plaque burden in an animal model of Alzheimer's disease. Neurobiology of aging, 28(8), pp.1206-1214.
  • 37. Clark, R.S., Kochanek, P.M., Watkins, S.C., Chen, M., Dixon, C.E., Seidberg, N.A., Melick, J., Loeffert, J.E., Nathaniel, P.D., Jin, K.L. and Graham, S.H. 2000. Caspase‐3 mediated neuronal death after traumatic brain injury in rats. Journal of neurochemistry, 74(2), pp.740-753.
  • 38. Han, B.H., Xu, D., Choi, J., Han, Y., Xanthoudakis, S., Roy, S., Tam, J., Vaillancourt, J., Colucci, J., Siman, R. and Giroux, A. 2002. Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death after neonatal hypoxic-ischemic brain injury. Journal of Biological Chemistry, 277(33), pp.30128-30136.
  • 39. Hermann, K. 2020. Glucose transporters in brain in health and disease. European Journal of Physiology, 472, 1299–1343
  • 40. Imam, M.I., Adamu, A., Muhammad, U.A. and Yusha’u, Y. 2017. Nigella sativa (black seed) extract improves spatial learning abilityin albino mice. Bayero Journal of Pure and Applied Sciences, 10(2), pp.111-114.
  • 41. Sana, S., Shaista, E., Naveed, A. S., Seemeen, G., Sarwat, Y. Bushra, J., Saida, H., and Tahira, P. 2017. Enhancement of memory function by antioxidant potential of Nigella sativa L. oil in restrained rats. Pakistan Journal of Pharmaceutical Science, 30(5), 2039-2046
  • 42. Sahar, F., Mohaddesh, S.A., Mahmoud, H.,Hamed, R.S. 2019. Nigella sativa and thymoquinone attenuate oxidative stress and cognitive impairment following cerebral hypoperfusion in rats. Metabolic Brain Disease, 34, 1001-1010
  • 43. Tabassum, S., Haider, S., Ahmad, S., Madiha, S., Parveen, T. 2017. Chronic choline supplementation improves cognitive and motor performance via modulating oxidative and neurochemical status in rats. Pharmacology, Biochemistry and Behavior, doi: 10.1016/j.pbb.2017.05.011
  • 44. Kehr, J., Yoshitake, T., Ichinose, F., Yoshitake, S., Kiss, B., Gyertyán, I., Adham, N. 2018. Effects of cariprazine on extracellular levels of glutamate, GABA, dopamine, noradrenaline and serotonin in the medial prefrontal cortex in the rat phencyclidine model of schizophrenia studied by microdialysis and simultaneous recordings of locomotor activity. Psychopharmacology. Available on: https://doi.org/10.1007/s00213-018-4874-z
  • 45. Cheema, M. A., Nawaz, S., Gul, S., Salman, T., Naqvi, S., Dar, A and Haleem, D. J. 2018. Neurochemical and behavioral effects of Nigella sativa and Olea europaea oil in rats. Nutritional Neuroscience, 21(3), 185-194

Repeated benzodiazepines ingestions affected behavioral and neurochemical profiles, with mild effect on histological integrities: modulatory efficacy of Nigella sativa oil

Year 2024, , 29 - 37, 30.08.2024
https://doi.org/10.32739/uha.jnbs.11.1538964

Abstract

Background: Benzodiazepines (BZDs) are a class of depressant drugs that have enjoyed widespread use in conventional clinical management of anxiety-related conditions such as panic disorders that require therapeutic central relaxation and sedation. Meanwhile, prolonged administration of benzodiazepines even at low doses has however been linked to variety of undesirable effects such as discontinuation relapse with the associated risk of abuse and dependency. Aim: This study investigated the behavioral, histological and biochemical outcomes of long-term low dose diazepam use and explored the potential role of nigella sativa oil (NSO) in the amelioration of the associated side effects. Methods: Adult Wistar rats (n=32) were randomized into four groups that received normal saline; diazepam; diazepam + NSO; or NSO only, respectively for 14 days. At the end of the period of the various exposures, the rats were taken through behavioral paradigms after which they were sacrificed for chemical and histological profiling. Results: diazepam-exposed rats exhibited stress-related manifestations with relatively poor performance in memory-related tasks. Repeated diazepam ingestion reduced brain antioxidant biomarkers while causing elevation of brain oxidative stress markers. On histological observation, mild degenerative changes were evident in the various brain regions of the diazepam-exposed rats. Conclusion: Interventional nigella sativa oil administration showed therapeutic potentials by mitigating and reversing the observed effects of diazepam, largely due to its antioxidant and anti-inflammatory effects as observed in the present study.

References

  • 1. Katsuki, A., Fujino, Y., Le Nguyen, H. and Yoshimura, R. 2018. Do Benzodiazepines Plus Fluvoxamine Cause a Rapid Increase in Serum Brain-derived Neurotrophic Factor or Clinical Improvement in Major Depressive Disorder Patients? Neuropsychiatry, 8(1), pp.11-16.
  • 2. Griffin, C.E., Kaye, A.M., Bueno, F.R. and Kaye, A.D. 2013. Benzodiazepine pharmacology and central nervous system–mediated effects. Ochsner Journal, 13(2), pp.214-223.
  • 3. Ramirez, K., Niraula, A. and Sheridan, J.F., 2016. GABAergic modulation with classical benzodiazepines prevent stress-induced neuro-immune dysregulation and behavioral alterations. Brain, behavior, and immunity, 51, pp.154-168.
  • 4. Gudin, J.A., Mogali, S., Jones, J.D., Comer, S.D. 2013. Risks, management, and monitoring of combination opioid, benzodiazepines, and/or alcohol use. Postgrad. Med. 125, 115–130.
  • 5. Elgarf, A.A., Siebert, D.C., Steudle, F., Draxler, A., Li, G., Huang, S., Cook, J.M., Ernst, M. and Scholze, P. 2018. Different Benzodiazepines Bind with Distinct Binding Modes to GABAA Receptors. ACS chemical biology, 13(8), pp.2033-2039.
  • 6. Kurko, T., Saastamoinen, L.K., Tuulio‐Henriksson, A., Taiminen, T., Tiihonen, J., Airaksinen, M. and Hietala, J. 2018. Trends in the long‐term use of benzodiazepine anxiolytics and hypnotics: A national register study for 2006 to 2014. Pharmacoepidemiology and Drug Safety, 27(6), pp.674-682
  • 7. Penninx, BWJH., Pines, D. S., Holmes, E. A., and Reif, A. 2021. Anxiety disorders. Lancet, 397:914-927.
  • 8. Nardi, A. E., and Quagliato, L. A. 2022. Benzodiazepines Are Efficacious and Safe for Long-Term Use: Clinical Research Data and More than Sixty Years in the Market. Psychother Psychoso, 91 (5): 300–303. https://doi.org/10.1159/000524730.
  • 9. Dubovsky, S.L., Marshall, D. 2022. Benzodiazepines remain important therapeutic options in psychiatric practice. Psychother Psychosom, 1–28. https://doi.org/10.1159/000524400.
  • 10. Silberman, E., Balon, R., Starcevic, V. et al. 2021. Benzodiazepines: it’s time to return the evidence. Br J Psychiatry, 218:125-127.
  • 11. Hirschtritt, M.E., Olfson, M.A., and Kroenke, K. 2021. Balancing the risks and benefits of benzodiazepines. JAMA, 328:347-348.
  • 12. Prashant, T., Jeffrey, C.L.L., Stephen, A., and Tarun, B. 2021. Benzodiazepines for the long-term treatment of anxiety disorders? Lancet, 398:119-120.
  • 13. Huhtaniska, S., Jääskeläinen, E., Heikka, T., Moilanen, J.S., Lehtiniemi, H., Tohka, J., Manjón, J.V., Coupé, P., Björnholm, L., Koponen, H. and Veijola, J., 2017. Long-term antipsychotic and benzodiazepine use and brain volume changes in schizophrenia: The Northern Finland Birth Cohort 1966 study. Psychiatry Research: Neuroimaging, 266, pp.73-82.
  • 14. Afzal, A. and Kiyatkin, E.A. 2019. Interactions of benzodiazepines with heroin: Respiratory depression, temperature effects, and behavior. Neuropharmacology, 158, p.107677.
  • 15. Imam A., Teslimat, A.J., Victoria, W., Samson, C., Aboyeji, O.L., Olatunbosun, O., Sheu-Tijani, S.T. and Saliu, A.M. 2019. Nigella sativa oil protected the hippocampus against Acetyl cholinesterase and oxidative dysfunctions-driven impaired working memory in rats. Bulletin of Faculty of Pharmacy, Cairo University, 57(1), pp.25-34.
  • 16. Imam, A., Sulaiman, N.A., Oyewole, A.L., Amin, A., Shittu, S.T.T. and Ajao, M.S. 2018. Pro-Neurogenic and Antioxidant Efficacy of Nigella sativa Oil Reduced Vulnerability Cholinesterase Dysfunction and Disruption in Amygdala-Dependent Behaviours in Chlorpyrifos Exposure. Journal of Krishna Institute of Medical Sciences (JKIMSU), 7(3).
  • Misra, H.P., and Fridovich, I. 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247(10):3170-3175.
  • 17. Ha, S.K., Shobha, D., Moon, E., Chari, M.A., Mukkanti, K., Kim, S.H., Ahn, K.H. and Kim, S.Y. 2010. Anti-neuroinflammatory activity of 1, 5-benzodiazepine derivatives. Bioorganic & medicinal chemistry letters, 20(13), pp.3969-3971.
  • 18. Borowicz-Reutt, K.K. and Czuczwar, S.J. 2020. Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacological Reports, pp.1-9.
  • 19. González-Fraguela, M.E., Blanco, L., Fernández, C.I., Lorigados, L., Serrano, T. and Fernández, J.L. 2018. Glutathione depletion: Starting point of brain metabolic stress, neuroinflammation and cognitive impairment in rats. Brain Research Bulletin, 137, pp.120-131.
  • 20. Huang, W.J., Zhang, X.I.A. and Chen, W.W. 2016. Role of oxidative stress in Alzheimer's disease. Biomedical reports, 4(5), pp.519-522. 21. Lawal, A.T., Sharafadeen, A.O., and Akinola, O.B. 2023. Neuromorphological and Biochemical Effects of Co-exposure to Bisphenol A and Cadmium in Insulin-resistant Rats. The Journal of Neurobehavioral Sciences, 10(3): p 74-81, DOI: 10.4103/jnbs.jnbs_14_23
  • 22. Zhang, Y., Wang, Q., Chen, H., Liu, X., Lv, K., Wang, T., Wang, Y., Ji, G., Cao, H., Kan, G. and Li, Y. 2018. Involvement of cholinergic dysfunction and oxidative damage in the effects of simulated weightlessness on learning and memory in rats. BioMed research international, doi:10.1155/2018/2547532.
  • 23. Pang, X., Panee, J., Liu, X., Berry, M.J., Chang, S.L. and Chang, L. 2013. Regional variations of antioxidant capacity and oxidative stress responses in HIV-1 transgenic rats with and without methamphetamine administration. Journal of Neuroimmune Pharmacology, 8(3), pp.691-704.
  • 24. O’Malley, A., O’Connell, C., Regan, C.M. 1998. Ultrastructural analysisreveals avoidance conditioning to induce a transient increase in hippocampal dentate spine density in the 6-hour post-training period. Neuroscience, 87: 607–613.
  • 25. Braidy, N. and Jugder, B.E. 2019. The precursor to glutathione (GSH), γ-glutamylcysteine (GGC), can Ameliorate Oxidative Damage and Neuroinflammation Induced by Amyloid- beta Oligomers in Primary Adult Human Brain Cells. Frontiers in aging neuroscience, 11, p.177.
  • 26. Koza, L. and Linseman, D.A. 2019. Glutathione precursors shield the brain from trauma. Neural regeneration research, 14(10), p.1701.
  • 27. Pang, X. and Panee, J. 2014. Roles of glutathione in antioxidant defense, inflammation, and neuron differentiation in the thalamus of HIV-1 transgenic rats. Journal of Neuroimmune Pharmacology, 9(3), pp.413-423.
  • 28. Sriram, K. and O’Callaghan, J.P. 2007. Divergent roles for tumor necrosis factor-α in the brain. Journal of Neuroimmune Pharmacology, 2(2), pp.140-153.
  • 29. Porro, C., Cianciulli, A. and Panaro, M.A. 2020. The Regulatory Role of IL-10 in Neurodegenerative Diseases. Biomolecules, 10(7), p.1017.
  • 30. Burmeister, A.R. and Marriott, I. 2018. The Interleukin-10 family of cytokines and their role in the CNS. Frontiers in cellular neuroscience, 12, p.458.
  • 31. Garcia, J.M., Stillings, S.A., Leclerc, J.L., Phillips, H., Edwards, N.J., Robicsek, S.A., Hoh, B.L., Blackburn, S. and Doré, S. 2017. Role of interleukin-10 in acute brain injuries. Frontiers in neurology, 8, p.244.
  • 32. Silva-Rodríguez, J., García-Varela, L., López-Arias, E., Domínguez-Prado, I., Cortés, J., Pardo-Montero, J., Fernández-Ferreiro, A., Ruibal, Á., Sobrino, T. and Aguiar, P. 2016. Impact of benzodiazepines on brain FDG-PET quantification after single-dose and chronic administration in rats. Nuclear medicine and biology, 43(12), pp.827-834.
  • 33. Steenbergen, L., Sellaro, R., Stock, A.K., Beste, C. and Colzato, L.S. 2015. γ-Aminobutyric acid (GABA) administration improves action selection processes: a randomised controlled trial. Scientific reports, 5(1), pp.1-7.
  • 34. Yoto, A., Murao, S., Motoki, M., Yokoyama, Y., Horie, N., Takeshima, K., Masuda, K., Kim, M. and Yokogoshi, H. 2012. Oral intake of γ-aminobutyric acid affects mood and activities of central nervous system during stressed condition induced by mental tasks. Amino Acids, 43(3), pp.1331-1337.
  • 35. Ano, Y., Ohya, R., Yamazaki, T., Takahashi, C., Taniguchi, Y., Kondo, K., Takashima, A., Uchida, K. and Nakayama, H. 2020. Hop bitter acids containing a β-carbonyl moiety prevent inflammation-induced cognitive decline via the vagus nerve and noradrenergic system. Scientific reports, 10(1), pp.1-13.
  • 36. Kalinin, S., Gavrilyuk, V., Polak, P.E., Vasser, R., Zhao, J., Heneka, M.T. and Feinstein, D.L. 2007. Noradrenaline deficiency in brain increases β-amyloid plaque burden in an animal model of Alzheimer's disease. Neurobiology of aging, 28(8), pp.1206-1214.
  • 37. Clark, R.S., Kochanek, P.M., Watkins, S.C., Chen, M., Dixon, C.E., Seidberg, N.A., Melick, J., Loeffert, J.E., Nathaniel, P.D., Jin, K.L. and Graham, S.H. 2000. Caspase‐3 mediated neuronal death after traumatic brain injury in rats. Journal of neurochemistry, 74(2), pp.740-753.
  • 38. Han, B.H., Xu, D., Choi, J., Han, Y., Xanthoudakis, S., Roy, S., Tam, J., Vaillancourt, J., Colucci, J., Siman, R. and Giroux, A. 2002. Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death after neonatal hypoxic-ischemic brain injury. Journal of Biological Chemistry, 277(33), pp.30128-30136.
  • 39. Hermann, K. 2020. Glucose transporters in brain in health and disease. European Journal of Physiology, 472, 1299–1343
  • 40. Imam, M.I., Adamu, A., Muhammad, U.A. and Yusha’u, Y. 2017. Nigella sativa (black seed) extract improves spatial learning abilityin albino mice. Bayero Journal of Pure and Applied Sciences, 10(2), pp.111-114.
  • 41. Sana, S., Shaista, E., Naveed, A. S., Seemeen, G., Sarwat, Y. Bushra, J., Saida, H., and Tahira, P. 2017. Enhancement of memory function by antioxidant potential of Nigella sativa L. oil in restrained rats. Pakistan Journal of Pharmaceutical Science, 30(5), 2039-2046
  • 42. Sahar, F., Mohaddesh, S.A., Mahmoud, H.,Hamed, R.S. 2019. Nigella sativa and thymoquinone attenuate oxidative stress and cognitive impairment following cerebral hypoperfusion in rats. Metabolic Brain Disease, 34, 1001-1010
  • 43. Tabassum, S., Haider, S., Ahmad, S., Madiha, S., Parveen, T. 2017. Chronic choline supplementation improves cognitive and motor performance via modulating oxidative and neurochemical status in rats. Pharmacology, Biochemistry and Behavior, doi: 10.1016/j.pbb.2017.05.011
  • 44. Kehr, J., Yoshitake, T., Ichinose, F., Yoshitake, S., Kiss, B., Gyertyán, I., Adham, N. 2018. Effects of cariprazine on extracellular levels of glutamate, GABA, dopamine, noradrenaline and serotonin in the medial prefrontal cortex in the rat phencyclidine model of schizophrenia studied by microdialysis and simultaneous recordings of locomotor activity. Psychopharmacology. Available on: https://doi.org/10.1007/s00213-018-4874-z
  • 45. Cheema, M. A., Nawaz, S., Gul, S., Salman, T., Naqvi, S., Dar, A and Haleem, D. J. 2018. Neurochemical and behavioral effects of Nigella sativa and Olea europaea oil in rats. Nutritional Neuroscience, 21(3), 185-194
There are 45 citations in total.

Details

Primary Language English
Subjects Neurology and Neuromuscular Diseases
Journal Section Research Article
Authors

Aminu Imam 0000-0003-2371-3065

Kudirat Funmi Lambe-oladeji This is me 0009-0008-8676-2490

Abdulwasiu Taiwo Lawal This is me 0009-0008-5107-0611

Oluwadamilola Eunice Ajibola This is me 0009-0005-8682-9905

Samson Chengetanai This is me 0000-0001-7160-3843

Musa Iyiola Ajibola This is me 0000-0002-6042-2120

Abdulmumin Ibrahim 0000-0002-1199-5782

Moyosore Salihu Ajao This is me 0000-0002-9074-1405

Publication Date August 30, 2024
Submission Date April 3, 2024
Acceptance Date July 15, 2024
Published in Issue Year 2024

Cite

Vancouver Imam A, Lambe-oladeji KF, Lawal AT, Ajibola OE, Chengetanai S, Ajibola MI, Ibrahim A, Ajao MS. Repeated benzodiazepines ingestions affected behavioral and neurochemical profiles, with mild effect on histological integrities: modulatory efficacy of Nigella sativa oil. JNBS. 2024;11(2):29-37.