Research Article
BibTex RIS Cite
Year 2024, Volume: 11 Issue: 3, 109 - 116, 31.12.2024
https://doi.org/10.32739/jnbs.11.1608188

Abstract

References

  • 1. Flora G, Gupta D, Tiwari A. Toxicity of lead. A review with recent updates. Interdiscip Toxicol. 2012;5(2):47-58. doi: 10.2478/inttox- 2012-0009.
  • 2. Alissa EM, Ferns GA. Heavy Metal Poisoning and Cardiovascular Disease. Dis J Toxicol. 2011;5(3):21. doi: 10.1155/2011/870125.
  • 3. Olatomide DO, Adebisi SS, Musa SA. Assessment of the effect of post-natal lead exposure on the hippocampus of developing wistar rats. Afr J Cell Pathol. 2019;11(4).
  • 4. Amedu NO, Omotoso GO. Lead acetate induced neurodegenerative changes in the dorsolateral prefrontal cortex of mice: the role of vitexin. Environ Anal Health Toxicol. 2020;35(1). doi: 10.5620/ eaht.2020002
  • 5. Highab SM, Magaji RA, Mohammed BY. Effect of lead poisoning and antidepressant drug on the prefrontal cortex of Wistar rat. Acta Sci Pharm Sci. 2018;2:16-21.
  • 6. Garza A, Vega R, Soto E. Cellular mechanisms of lead neurotoxicity. Med Sci Monit. 2006;12(3):RA57. doi: 10.12659/MSM.878462.
  • 7. Bellinger DC, Matthews-Bellinger JA, Kordas K. A developmental perspective on early-life exposure to neurotoxicants. Environ Int. 2016;94:103-112. doi: 10.1016/j.envint.2016.05.005
  • 8. Canfield RL. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N Engl J Med. 2003;348(16):1517-1526. doi: 10.1056/NEJMsa021811
  • 9. Jedrychowski G, Ajarem JS. Effect of perinatal lead exposure on the social behaviour of laboratory mice of adolescent age. J Biol Sci. 2009;15:67-72.
  • 10. Lamphear PA, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. “Curcumin longa and cancer: An “old-age” disease with an “old-age” solution”. Cancer Lett. 2005;267:133-164. doi: 10.1016/j. canlet.2004.12.008
  • 11. Vigeh M, Ralser M, Perrone GG, Iglseder B, Rinnerthaler M, Dawes IW. “Oxidative stress and neurodegeneration: The yeast model system”. Front Biosci. 2014;18(3):1174-93. doi: 10.2741/4250
  • 12. Abu-Taweel GM. Curcumin Attenuates Lead (Pb)–Induced Neurobehavioral and Neurobiochemical Dysfunction: A Review. Int J Pharm Pharm Sci. 2018;10:23. doi: 10.22159/ijpps.2018v10i10.27677
  • 13. Hamid MI, Salem MF. Histological changes of the albino rat cerebellar cortex under the effect of different doses of tramadol administration. The Egyptian Journal of Histology. 2014;38(1):143-155. doi: 10.1097/01.EHX.0000451789.94846.c5.
  • 14. Bulus T, David SI, Bilbis LS, Babando A. In vitro antioxidant activity of n-butanol extract of curcuma longa and its potential to protect erythrocytes membrane against osmotic-induced haemolysis. Sci World J. 2017;12(1):1597-6343. doi: 10.1155/2017/15976343
  • 15. Ajayi AF, Akhigbe RE. Staging of estrus in experimental rodents: Fertility resources and practice. 2020;6:5. doi: 10.20517/2347-9264.2020.04.
  • 16. Olopade F, Shokunbi MT. The Development of the External Granular Layer of the Cerebellum and Neurobehavioral Correlates in Neonatal Rats Following Intrauterine and Postnatal Exposure of Caffeine. J Caffeine Adenosine Res. 2018;8(1). doi: 10.1089/caff.2018.0001.
  • 17. Dubovicky M, Ujhazy E, Navarova J. Evaluation of neuromotor and reflex development in rats. Interdiscip Toxicol. 2008;1(1):47-50. doi: 10.2478/v10102-007-0010-x.
  • 18. Okey SM, Ayo JO. The role of co-administration of ascorbic acid and zinc gluconate on brain biochemical changes in Wistar rats during the hot humid season. Eur J Biotechnol Biosci. 2015;3(1):46-52.
  • 19. Drury RAB, Carleton HM, Wallington A. Carleton’s Histological Technique. New York: Oxford University Press; 1967.
  • 20. Carson FL. Histotechnology. A self-instructional text. Pearson Higher; 1990.
  • 21. Eluwa MA, Ekanem TB, Uddoh BP, Ekong MB, Asuquo RO, Akpantah AO, Nwakanma OA. Teratogenic Effect of Crude Ethanolic Root Bark and Leaf Extracts of Rauwolfia vomitorial (Apocynaceae) on Nissl Substances of Albino Wistar Rat Fetuses. Neurosci J. 2013;90(6731).
  • 22. Jensen EC. Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec. 2013;296(3):378-381. doi:10.1002/ ar.22641
  • 23. Amber WS, Musa SA, Sambo SJ, Agbon AN. Neuroprotective Effect of Citrus sinensis L. on Mercury Exposed Wistar Rats. Ann Trop Pathol. 2020;11:157-165.
  • 24. Ekpo UU, Umana UE, Sadeeq AA. Zingiber officinale Ameliorates Tramadol induced Histopathological Distortions in CA1 and CA3 of the Hippocampus of Adult Wistar Rats. J Neurobehav Sci. 2023;10(2):29-40. doi: 10.30621/jnbs.1221
  • 25. Elisha RU, Tanko M, Sadeeq AA. Evaluation of ethanol extract of Curcuma longa in leadinduced hippocampal neurotoxicity. J Neurobehavioral Sci. 2023;10:1321. doi:10.4103/jnbs.jnbs_23_22
  • 26. Usman MI, Buraimoh AA, Ibegbu OA. Histological and biochemical studies of Tamarindus indica pulp extract on the cerebral cortex in prenatal ethanol exposure in Wistar rats. J Exp Clin Anat. 2017;15:96- 101. doi: 10.4103/1596-2393.194707.
  • 27. Usman MI, Adebisi SS, Musa SA, Iliya AI, Ochieng JJ, Ivang EA, Peter BA, Okesina AA. Neurobehavioral and Immunohistochemical Studies of the Cerebral Cortex Following Treatment with Ethyl Acetate Leaf Fraction of Tamarindus indica During Prenatal Aluminum Chloride Exposure in Wistar Rats. J Exp Pharmacol. 2022;14:275–289. doi:10.2147/JEP.S343396
  • 28. Benammi H, Erazi H, El-Hiba O, Vinay L, Bras H, Viemari JC, Gamrani H. Disturbed sensorimotor and electrophysiological patterns in lead intoxicated rats during development are restored by curcumin.PLoS One. 2017;12:e0172715. doi:10.1371/journal.pone.0172715
  • 29. Aquilano K, Baldelli S, Ciriolo M.R. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol. 2014;5:196. doi:10.3389/fphar.2014.00196
  • 30. Ashtiani HRA, Bakhshandi AK, Rahbar M, Mirzaei A, Malekpour A, Rastegar H. Glutathione, cell proliferation and differentiation. Afr J Biotechnol. 2011;10(34):6348-6363. doi:10.5897/AJB11.590
  • 31. Lu X, Wu F, Jiang M, Sun X, Tian G. Curcumin ameliorates gestational diabetes in mice partly through activating AMPK. Pharm Biol. 2019;57:250–254. doi:10.1080/13880209.2019.1577461
  • 32. Ghoneim FM, Khalaf HA, Elsamanoudy AZ, Helaly AN. Effect of chronic usage of tramadol on motor cerebral cortex and testicular tissues of adult male albino rats and the effect of its withdrawal: histological, immunohistochemical and biochemical study. Int J Clin Exp Pathol. 2014;7(11):7323. doi: 10.1023/A:1012746130614
  • 33. El-Beltagi EM, ElKaliny HH, Moustafa KA, Soliman GM, Zamzam AEMF. Effect of Bone Marrow-Derived Mesenchymal Stem Cells on the Hippocampal CA1 Area of Aluminium Chloride-Induced Alzheimer’s Disease in Adult Male Albino Rat: A Histological and Immunohistochemical Study. Egypt J Histol. 2022;45(4):968-985. doi:10.21608/ejh.2022.149355.1396
  • 34. Niu R, Sun Z, Wang J, Cheng Z, Wang J. Effects of fluoride and lead on locomotor behavior and expression of nissl body in brain of adult rats. Fluoride. 2008;41(4):276-282.
  • 35. Adekomi DA, Adegoke AA, Olaniyan OO, Ogunrinde AE, Ijomone OK. Effects of alcohol and tramadol co-treatment on cognitive functions and neuro-inflammatory responses in the medial prefrontal cortex of juvenile male rats. Anat. 2019;13(1):1-12.
  • 36. Syed ZN. A Comparative Study of the Histological Changes in Cerebral Cortex, Hippocampus, Cerebellum, Pons & Medulla of the Albino rat due to Lead Toxicity. Int J Anat Res. 2015;3(2):1173-1178.
  • 37. Hamza GA, Augustine OI, Buraimoh AA. Evaluation of the effects of n-butanol Garlic extract on lead-induced changes on prefrontal cortex of Wistar rats. Afr J Cell Pathol. 2017;8:9-14.
  • 38. Olatomide OD, Adebisi SS, Musa SA. Assessment of the effect of post-natal lead exposure on the hippocampus of developing wistar rats. Afr J Cell Pathol. 2019;11(4):23-32.
  • 39. Zhang YM, Liu XZ, Lu H, Mei L, Liu ZP. Lipid peroxidation and ultrastructural modifications in brain after perinatal exposure to lead and/or cadmium in rat pups. Biomed Environ Sci. 2009;22(5):423-429. doi:10.1016/S0895-3988(09)60073-1
  • 40. Mousa AM, Al-Fadhli AS, Rao MS, Kilarkaje N. Gestational lead exposure induces developmental abnormalities and up-regulates apoptosis of fetal cerebellar cells in rats. Drug Chem Toxicol. 2015;38(1):73-83. doi:10.3109/01480545.2014.913020

N-Butanol Fraction of Curcuma Longa (Turmeric) Ameliorates Lead Acetate-Induced Altered Sensory Motor Activity, Oxidative Stress and Histopathological Changes in the Frontal Cortex of Wistar Rat Pups

Year 2024, Volume: 11 Issue: 3, 109 - 116, 31.12.2024
https://doi.org/10.32739/jnbs.11.1608188

Abstract

Background: Lead acetate (Pb) exposure during frontal cortex development is associated with developmental toxicity later in life, causing both morphological and functional alterations. Curcuma longa, however, has been suggested to possess neuroprotective qualities that could lessen these adverse effects. Objective: Assessed the frontal cortex following treatment with Curcuma longa. Materials and Methods: Twenty adult female Wistar rats and ten adult male Wistar rats were matched during the proestrous phase of the estrous cycle in order to mate and create five groups of six (n=6) in a 4:2 (4 females to 2 males) ratio. Gestational day 0 was marked as the confirmation of pregnancy based on if sperm is present and a vaginal plug in the vaginal smear. Four (n=4) pregnant Wistar rats were put together. Group 1 (control) rats were given 2 milliliters per kilogram of distilled water. Pb was given at a dose of 120 mg/kg to Group 2. Group 3 rats were given 120 mg/kg of lead and 100 mg/kg of vitamin C. The animals in Group 4 received 750 mg/kg of Curcuma longa and 120 mg/kg of Pb. The animals in Group 5 rats were given 1500 mg/kg of Curcuma longa and 120 mg/kg of Pb. From gestational day 7 to day 21 (14 days), the medication was administered orally. The animals were allowed to litter naturally. At postnatal day (PND) 1, some pups were euthanized using chloroform inhalation and their brains were harvested for Oxidative stress markers, histology, histochemical assessments. While some pups were kept for Cliff avoidance test at PND 4-7. Results: The study found that lead acetate (Pb) exposure during gestation significantly decreased the mean turning latency in the cliff avoidance test and increased lipid peroxidation (MDA) levels, while decreasing antioxidant enzyme levels (SOD, CAT, GSH) compared to the control group. These neurological and oxidative changes were mitigated by co-administration of Curcuma longa, with a notable improvement in the cliff avoidance test performance and restoration of the altered histological and histochemical markers. The results suggest that Curcuma longa, a natural antioxidant, has neuroprotective properties that can counteract the adverse effects of lead toxicity during gestational development. Conclusion: N-Butanol Fraction of Curcuma Longa ameliorated lead-induced neurotoxicity in rat pups.

References

  • 1. Flora G, Gupta D, Tiwari A. Toxicity of lead. A review with recent updates. Interdiscip Toxicol. 2012;5(2):47-58. doi: 10.2478/inttox- 2012-0009.
  • 2. Alissa EM, Ferns GA. Heavy Metal Poisoning and Cardiovascular Disease. Dis J Toxicol. 2011;5(3):21. doi: 10.1155/2011/870125.
  • 3. Olatomide DO, Adebisi SS, Musa SA. Assessment of the effect of post-natal lead exposure on the hippocampus of developing wistar rats. Afr J Cell Pathol. 2019;11(4).
  • 4. Amedu NO, Omotoso GO. Lead acetate induced neurodegenerative changes in the dorsolateral prefrontal cortex of mice: the role of vitexin. Environ Anal Health Toxicol. 2020;35(1). doi: 10.5620/ eaht.2020002
  • 5. Highab SM, Magaji RA, Mohammed BY. Effect of lead poisoning and antidepressant drug on the prefrontal cortex of Wistar rat. Acta Sci Pharm Sci. 2018;2:16-21.
  • 6. Garza A, Vega R, Soto E. Cellular mechanisms of lead neurotoxicity. Med Sci Monit. 2006;12(3):RA57. doi: 10.12659/MSM.878462.
  • 7. Bellinger DC, Matthews-Bellinger JA, Kordas K. A developmental perspective on early-life exposure to neurotoxicants. Environ Int. 2016;94:103-112. doi: 10.1016/j.envint.2016.05.005
  • 8. Canfield RL. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N Engl J Med. 2003;348(16):1517-1526. doi: 10.1056/NEJMsa021811
  • 9. Jedrychowski G, Ajarem JS. Effect of perinatal lead exposure on the social behaviour of laboratory mice of adolescent age. J Biol Sci. 2009;15:67-72.
  • 10. Lamphear PA, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. “Curcumin longa and cancer: An “old-age” disease with an “old-age” solution”. Cancer Lett. 2005;267:133-164. doi: 10.1016/j. canlet.2004.12.008
  • 11. Vigeh M, Ralser M, Perrone GG, Iglseder B, Rinnerthaler M, Dawes IW. “Oxidative stress and neurodegeneration: The yeast model system”. Front Biosci. 2014;18(3):1174-93. doi: 10.2741/4250
  • 12. Abu-Taweel GM. Curcumin Attenuates Lead (Pb)–Induced Neurobehavioral and Neurobiochemical Dysfunction: A Review. Int J Pharm Pharm Sci. 2018;10:23. doi: 10.22159/ijpps.2018v10i10.27677
  • 13. Hamid MI, Salem MF. Histological changes of the albino rat cerebellar cortex under the effect of different doses of tramadol administration. The Egyptian Journal of Histology. 2014;38(1):143-155. doi: 10.1097/01.EHX.0000451789.94846.c5.
  • 14. Bulus T, David SI, Bilbis LS, Babando A. In vitro antioxidant activity of n-butanol extract of curcuma longa and its potential to protect erythrocytes membrane against osmotic-induced haemolysis. Sci World J. 2017;12(1):1597-6343. doi: 10.1155/2017/15976343
  • 15. Ajayi AF, Akhigbe RE. Staging of estrus in experimental rodents: Fertility resources and practice. 2020;6:5. doi: 10.20517/2347-9264.2020.04.
  • 16. Olopade F, Shokunbi MT. The Development of the External Granular Layer of the Cerebellum and Neurobehavioral Correlates in Neonatal Rats Following Intrauterine and Postnatal Exposure of Caffeine. J Caffeine Adenosine Res. 2018;8(1). doi: 10.1089/caff.2018.0001.
  • 17. Dubovicky M, Ujhazy E, Navarova J. Evaluation of neuromotor and reflex development in rats. Interdiscip Toxicol. 2008;1(1):47-50. doi: 10.2478/v10102-007-0010-x.
  • 18. Okey SM, Ayo JO. The role of co-administration of ascorbic acid and zinc gluconate on brain biochemical changes in Wistar rats during the hot humid season. Eur J Biotechnol Biosci. 2015;3(1):46-52.
  • 19. Drury RAB, Carleton HM, Wallington A. Carleton’s Histological Technique. New York: Oxford University Press; 1967.
  • 20. Carson FL. Histotechnology. A self-instructional text. Pearson Higher; 1990.
  • 21. Eluwa MA, Ekanem TB, Uddoh BP, Ekong MB, Asuquo RO, Akpantah AO, Nwakanma OA. Teratogenic Effect of Crude Ethanolic Root Bark and Leaf Extracts of Rauwolfia vomitorial (Apocynaceae) on Nissl Substances of Albino Wistar Rat Fetuses. Neurosci J. 2013;90(6731).
  • 22. Jensen EC. Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec. 2013;296(3):378-381. doi:10.1002/ ar.22641
  • 23. Amber WS, Musa SA, Sambo SJ, Agbon AN. Neuroprotective Effect of Citrus sinensis L. on Mercury Exposed Wistar Rats. Ann Trop Pathol. 2020;11:157-165.
  • 24. Ekpo UU, Umana UE, Sadeeq AA. Zingiber officinale Ameliorates Tramadol induced Histopathological Distortions in CA1 and CA3 of the Hippocampus of Adult Wistar Rats. J Neurobehav Sci. 2023;10(2):29-40. doi: 10.30621/jnbs.1221
  • 25. Elisha RU, Tanko M, Sadeeq AA. Evaluation of ethanol extract of Curcuma longa in leadinduced hippocampal neurotoxicity. J Neurobehavioral Sci. 2023;10:1321. doi:10.4103/jnbs.jnbs_23_22
  • 26. Usman MI, Buraimoh AA, Ibegbu OA. Histological and biochemical studies of Tamarindus indica pulp extract on the cerebral cortex in prenatal ethanol exposure in Wistar rats. J Exp Clin Anat. 2017;15:96- 101. doi: 10.4103/1596-2393.194707.
  • 27. Usman MI, Adebisi SS, Musa SA, Iliya AI, Ochieng JJ, Ivang EA, Peter BA, Okesina AA. Neurobehavioral and Immunohistochemical Studies of the Cerebral Cortex Following Treatment with Ethyl Acetate Leaf Fraction of Tamarindus indica During Prenatal Aluminum Chloride Exposure in Wistar Rats. J Exp Pharmacol. 2022;14:275–289. doi:10.2147/JEP.S343396
  • 28. Benammi H, Erazi H, El-Hiba O, Vinay L, Bras H, Viemari JC, Gamrani H. Disturbed sensorimotor and electrophysiological patterns in lead intoxicated rats during development are restored by curcumin.PLoS One. 2017;12:e0172715. doi:10.1371/journal.pone.0172715
  • 29. Aquilano K, Baldelli S, Ciriolo M.R. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol. 2014;5:196. doi:10.3389/fphar.2014.00196
  • 30. Ashtiani HRA, Bakhshandi AK, Rahbar M, Mirzaei A, Malekpour A, Rastegar H. Glutathione, cell proliferation and differentiation. Afr J Biotechnol. 2011;10(34):6348-6363. doi:10.5897/AJB11.590
  • 31. Lu X, Wu F, Jiang M, Sun X, Tian G. Curcumin ameliorates gestational diabetes in mice partly through activating AMPK. Pharm Biol. 2019;57:250–254. doi:10.1080/13880209.2019.1577461
  • 32. Ghoneim FM, Khalaf HA, Elsamanoudy AZ, Helaly AN. Effect of chronic usage of tramadol on motor cerebral cortex and testicular tissues of adult male albino rats and the effect of its withdrawal: histological, immunohistochemical and biochemical study. Int J Clin Exp Pathol. 2014;7(11):7323. doi: 10.1023/A:1012746130614
  • 33. El-Beltagi EM, ElKaliny HH, Moustafa KA, Soliman GM, Zamzam AEMF. Effect of Bone Marrow-Derived Mesenchymal Stem Cells on the Hippocampal CA1 Area of Aluminium Chloride-Induced Alzheimer’s Disease in Adult Male Albino Rat: A Histological and Immunohistochemical Study. Egypt J Histol. 2022;45(4):968-985. doi:10.21608/ejh.2022.149355.1396
  • 34. Niu R, Sun Z, Wang J, Cheng Z, Wang J. Effects of fluoride and lead on locomotor behavior and expression of nissl body in brain of adult rats. Fluoride. 2008;41(4):276-282.
  • 35. Adekomi DA, Adegoke AA, Olaniyan OO, Ogunrinde AE, Ijomone OK. Effects of alcohol and tramadol co-treatment on cognitive functions and neuro-inflammatory responses in the medial prefrontal cortex of juvenile male rats. Anat. 2019;13(1):1-12.
  • 36. Syed ZN. A Comparative Study of the Histological Changes in Cerebral Cortex, Hippocampus, Cerebellum, Pons & Medulla of the Albino rat due to Lead Toxicity. Int J Anat Res. 2015;3(2):1173-1178.
  • 37. Hamza GA, Augustine OI, Buraimoh AA. Evaluation of the effects of n-butanol Garlic extract on lead-induced changes on prefrontal cortex of Wistar rats. Afr J Cell Pathol. 2017;8:9-14.
  • 38. Olatomide OD, Adebisi SS, Musa SA. Assessment of the effect of post-natal lead exposure on the hippocampus of developing wistar rats. Afr J Cell Pathol. 2019;11(4):23-32.
  • 39. Zhang YM, Liu XZ, Lu H, Mei L, Liu ZP. Lipid peroxidation and ultrastructural modifications in brain after perinatal exposure to lead and/or cadmium in rat pups. Biomed Environ Sci. 2009;22(5):423-429. doi:10.1016/S0895-3988(09)60073-1
  • 40. Mousa AM, Al-Fadhli AS, Rao MS, Kilarkaje N. Gestational lead exposure induces developmental abnormalities and up-regulates apoptosis of fetal cerebellar cells in rats. Drug Chem Toxicol. 2015;38(1):73-83. doi:10.3109/01480545.2014.913020
There are 40 citations in total.

Details

Primary Language English
Subjects Neurogenetics, Peripheral Nervous System, Medical Biotechnology (Other)
Journal Section Research Article
Authors

Israel Bakenneso Isaiah This is me 0009-0007-5228-1616

Sunday Musa 0000-0003-3097-9355

Abubakar Adamu Sadeeq This is me 0000-0001-5883-3425

Ubong Ekpo 0000-0002-9454-2526

Publication Date December 31, 2024
Submission Date June 14, 2024
Acceptance Date July 30, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

Vancouver Bakenneso Isaiah I, Musa S, Adamu Sadeeq A, Ekpo U. N-Butanol Fraction of Curcuma Longa (Turmeric) Ameliorates Lead Acetate-Induced Altered Sensory Motor Activity, Oxidative Stress and Histopathological Changes in the Frontal Cortex of Wistar Rat Pups. JNBS. 2024;11(3):109-16.