Study of Cognitive Changes in Adult Albino Mice After Intra-Uterine Exposure to Mobile Phone Radiations from Various Frequency Generations
Year 2025,
Volume: 12 Issue: 2, 59 - 67, 31.08.2025
Amat Abdoulie Tekanyi
,
Abdullahi Hussein Umar
Abdulhakeem Binhambali
,
Yusuf Yusha'u
,
Aliyah Temitayo Ahmed
,
Haruna Muhammad Kolo
,
Abdoulie Momodou Sunkary Tekanyi
,
Abdulazeez Muzemil
,
Aliyu Abubakar Yahaya
,
Rabiu Abdssalam Magaji
Abstract
Aim: Advancements in mobile telecommunications have revolutionized communication, yet concerns persist about the potential health risks of radiofrequency (RF) radiation, particularly during critical developmental stages like pregnancy. This study examines the cognitive impact of intrauterine exposure to mobile phone radiation (MPR) across different frequency generations in albino mice. Materials and Methods: Thirty-five healthy mice, obtained from pregnant females, were divided into seven groups: a control group (no exposure) and six experimental groups exposed to 2G (0.9 GHz), 3G (1.5 GHz), and 4G (1.95 GHz) MPR until either birth or weaning. After eight weeks, cognitive function was assessed using the Y-Maze, Novel Object Recognition Test (NORT), Elevated Plus Maze (EPM), and Morris Water Maze (MWM). Results: Results revealed significant cognitive deficits in exposed mice. Foetal MPR exposure reduced percentage alternation in the Y-Maze and discrimination ratio in NORT, with more pronounced impairments in groups exposed until weaning. Retention memory latency increased in the EPM, while acquisition memory remained unchanged. In the MWM, exposed mice spent less time in the target quadrant and had fewer platform crossings, indicating impaired spatial memory. Conclusion: These findings suggest that prolonged prenatal and early postnatal MPR exposure significantly disrupts learning and memory, emphasizing the need for further research on its long-term neurological consequences.
References
-
1. Chen, S., Liang, Y. C., Sun, S., Kang, S., Cheng, W., & Peng, M. (2020). Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data rate and movement speed. IEEE Wireless Communications, 27(2), 218-228. DOI: 10.1109/MWC.001.1900333
-
2. Banafaa, M., Shayea, I., Din, J., Azmi, M. H., Alashbi, A., Daradkeh, Y. I., & Alhammadi, A. (2023). 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities. Alexandria Engineering Journal, 64, 245-274. DOI:10.1016/j.aej.2022.08.017
-
3. Salih, A. A., Zeebaree, S. R., Abdulraheem, A. S., Zebari, R. R., Sadeeq, M. A., & Ahmed, O. M. (2020). Evolution of mobile wireless communication to 5G revolution. Technology Reports of Kansai University, 62(5), 2139-2151.
-
4. Bakare, B. I., & Bassey, E. E. (2021). A comparative study of the evolution of wireless communication technologies from the first generation (1G) to the fourth generation (4G). International Journal of Electronics Communication and Computer Engineering, 12(3), 73-84.
-
5. Jiang, W., & Han, B. (2024). Evolution to First-Generation (1G) Mobile Cellular Communications. In Cellular Communication Networks and Standards, 7-21.
-
6. Meese, J., & Wilken, R. (2024). Mobile media and telecommunications. In The Media and Communications in Australia, 241-251.
-
7. Abraham-Ibe, I. G. (2021). Information and communication technology (ICT) and improved method of office management/administration. African Scholar Journal of Management Science Entrepreneuship, 23, 199-214.
-
8. Ramalingam, M. (2022). Role of ICT in Telemedicine. In Geospatial Data Science in Healthcare for Society, 227-272.
-
9. Heikkinen, D. (2023). A Brief Overview of the Implications of Mobile Applications for Society. Central Asian Journal of Social Sciences and History, 4(1), 141-148.
-
10. Xia, L., Baghaie, S., & Sajadi, S. M. (2024). The digital economy: Challenges and opportunities in the new era of technology and electronic communications. Ain Shams Engineering Journal, 15(2), 102411. DOI: 10.1016/j.asej.2023.102411
-
11. Mariappan, P. M., Raghavan, D. R., Aleem, S. H. A., and Zobaa, A. F. (2016). Effects of electromagnetic interference on the functional usage of medical equipment by 2G/3G/4G cellular phones: A review. Journal of Advanced Research, 7(5), 727-738. DOI: 10.1016/j.jare.2016.04.004
-
12. Pandey, G. J., & Mehrotra, S. (2024). Exploring the use of mobile communication in achieving sustainable development goals: An Indian perspective. In Role of Science and Technology for Sustainable Future, 1, 361-373.
-
13. Gondal, A. H., Areche, F. O., Porras-Roque, M. S., Paucarmayta, A. A. M., Paucarmayta, M. H. M., Cabello, G. G. C., and Rodriguez-Deza, J. W. (2023). Fragile Effects of Mobile Phone Emitted Radiations on Agricultural Growth and Ecological Systems. Reviews in Agricultural Science, 11, 137-155.
-
14. Matthew, U. O., Bakare, K. M., Oyekunle, D., Nkeiruka, A. M., & Ebong, G. N. (2024). Environmental health ecosystem sustainability in the era of electromagnetic radiation contamination. Journal of Community Medicine and Public Health Reports, 5(2), 1-10. DOI: 10.38207/JCMPHR/2024/JAN05020418
-
15. Kennedy, M. B. (2016). Synaptic signaling in learning and memory. Cold Spring Harbor Perspectives in Biology, 8(2), a016824.
-
16. Hu, C., Zuo, H., & Li, Y. (2021). Effects of radiofrequency electromagnetic radiation on neurotransmitters in the brain. Frontiers in Public Health, 9, 691880.
-
17. Kim, J. H., Kim, H. J., Yu, D. H., Kweon, H. S., Huh, Y. H., & Kim, H. R. (2017). Changes in numbers and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequency-electromagnetic field. PLoS One, 12(10), e0186416. DOI: 10.1371/journal.pone.0186416
-
18. Wang, K., Lu, J. M., Xing, Z. H., Zhao, Q. R., Hu, L. Q., Xue, L., Zhang, J., & Mei, Y. A. (2017). Effect of 1.8 GHz radiofrequency electromagnetic radiation on novel object associative recognition memory in mice. Scientific Reports, 7(1), 44521. DOI: 10.1038/srep44521
-
19. Schapiro, A. C., Reid, A. G., Morgan, A., Manoach, D. S., Verfaellie, M., & Stickgold, R. (2019). The hippocampus is necessary for the consolidation of a task that does not require the hippocampus for initial learning. Hippocampus, 29(11), 1091-1100.
-
20. Khan, M. J., Jamil, B., and Sethi, A. (2020). Learning based on principles of cognitivism. Journal of Ayub Medical College Abbottabad, 32(4), 585-587.
-
21. Asma, S. K., Ambi, A. A., Hajara, I., & Aliyu, I. I. (2020). Antifertility studies on the stem–bark of detarium senegalense JF gmelin (fabaceae) on female mice. Journal of Pharmaceutical Development and Industrial Pharmacy, 2(3), 1-4.
-
22. Akakin, D., Tok, O. E., Anil, D., Akakin, A., Sirvanci, S., Sener, G., & Ercan, F. (2021). Electromagnetic waves from mobile phones may affect rat brain during development. Turkish Neurosurgery, 31, 412-421. DOI:10.5137/1019-5149.JTN.31665-20.2
-
23. Magaji, R. A., Umar, A. H., Mukhtar, A. I., Yusha’u, Y., Tekanyi, A. A., Kolo, H. M. John, H. M., Hayatuddeen, A. I., Ya’u, F., & Idris, Y. (2022). Exogenous glutathione prevents mobile phone radiations-induced neurobehavioural deficits in mice via central antioxidant pathway. Journal of African Association of Physiological Sciences, 10(1), 13-23.
-
24. Okur, Z. H., & Sağir, D. (2021). Effects of cellular phone electromagnetic field exposure on the hippocampi of rats in childhood and adolescence. Neurological Sciences and Neurophysiology, 38(2), 135-142.
-
25. King, D. L., & Arendash, G. W. (2002). Behavioral characterization of the Tg2576 transgenic model of Alzheimer's disease through 19 months. Physiology and Behavior, 75(5), 627-642.
-
26. Kraeuter, A. K., Guest, P. C., & Sarnyai, Z. (2019). The Y-maze for assessment of spatial working and reference memory in mice. Pre-clinical models: Techniques and protocols, 105-111.
-
27. Zhang, R., Xue, G., Wang, S., Zhang, L., Shi, C., & Xie, X. (2012). Novel object recognition as a facile behavior test for evaluating drug effects in AβPP/PS1 Alzheimer's disease mouse model. Journal of Alzheimer's Disease, 31(4), 801-812. DOI: 10.3233/JAD-2012-120151
-
28. Yusha'u, Y., Hanafi, A. A., & Adam, U. M. (2023). Antidepressant-Like effects of Cinnamomum verum on open-space forced swim-induced depression in mice. Nigerian Journal of Physiological Sciences, 38(2), 223-227. DOI: 10.54548/njps.v38i2.11
-
29. Komada, M., Takao, K. & Miyakawa, T. (2008). Elevated plus maze for mice. Journal of Visualized Experiment, 22, 1088.
-
30. Cain, D. P., Saucier, D., Hall, J., Hargreaves, E. L. & Boon, F. (1996). Detailed behavioral analysis of water maze acquisition under APV or CNQX: Contribution of sensorimotor disturbances to drug-induced acquisition deficits. Behavioral Neuroscience, 110, 86-102. DOI:10.1037//0735-7044.110.1.86
-
31. Reddy, D. S., Li, Y., Qamari, T., & Ramakrishnan, S. (2024). Behavioral assays for comprehensive evaluation of cognitive and neuropsychiatric comorbidities of traumatic brain injury and chronic neurological disorders. Current Protocols, 4(10), e70019. DOI: 10.1002/cpz1.70019
-
32. Fragopoulou, A. F., Miltiadous, P., Stamatakis, A., Stylianopoulou, F., Koussoulakos, S. L., & Margaritis, L. H. (2010). Whole body exposure with GSM 900 MHz affects spatial memory in mice. Pathophysiology, 17(3), 179-187. DOI: 10.1016/j.pathophys.2009.11.002
-
33. Ntzouni, M. P., Stamatakis, A., Stylianopoulou, F., & Margaritis, L. H. (2011). Short-term memory in mice is affected by mobile phone radiation. Pathophysiology, 18(3), 193-199.
-
34. Ikinci, A., Odaci, E., Yildirim, M., Kaya, H., Akça, M., Hanci, H., Asian, A., Sonmez, O. F., & Bas, O. (2013). The effects of prenatal exposure to a 900 megahertz electromagnetic field on hippocampus morphology and learning behavior in rat pups. NeuroQuantology, 11(4), 582-590. DOI: 10.14704/nq.2013.11.4.699
-
35. Qubty, D., Schreiber, S., Rubovitch, V., Boag, A., & Pick, C. G. (2021). No significant effects of cellphone electromagnetic radiation on mice memory or anxiety: some mixed effects on traumatic brain injured mice. Neurotrauma Reports, 2(1), 381-390. DOI: 10.1089/neur.2021.0009
-
36. Keleş, A. İ., Yıldırım, M., Gedikli, Ö., Çolakoğlu, S., Kaya, H., Baş, O., Sinmez, O. F., & Odacı, E. (2018). The effects of a continuous 1-ha day 900-MHz electromagnetic field applied throughout early and mid-adolescence on hippocampus morphology and learning behavior in late adolescent male rats. Journal of Chemical Neuroanatomy, 94, 46-53. DOI: 10.1016/j.jchemneu.2018.08.006
-
37. Klose, M., Grote, K., Spathmann, O., Streckert, J., Clemens, M., Hansen, V. W., & Lerchl, A. (2014). Effects of early-onset radiofrequency electromagnetic field exposure (GSM 900 MHz) on behavior and memory in rats. Radiation research, 182(4), 435-447.
-
38. Movvahedi, M. M., Tavakkoli-Golpayegani, A., Mortazavi, S. A. R., Haghani, M., Razi, Z., Shojaie-Fard, M. B., Zare, M., Mina, E., Mansouabadi, L., & Mortazavi, S. M. J. (2014). Does exposure to GSM 900 MHz mobile phone radiation affect short-term memory of elementary school students?. Journal of Pediatric Neurosciences, 9(2), 121-124. DOI: 10.4103/1817-1745.139300
-
39. Tafakori, S., Farrokhi, A., Shalchyan, V., & Daliri, M. R. (2020). Investigating the impact of mobile range electromagnetic radiation on the medial prefrontal cortex of the rat during working memory. Behavioural Brain Research, 391, 112703.
-
40. Jadidi, M., Firouzabadi, S., Rashidipour, A., Bolouri, B., & Fath, E. Y. (2007). Low-power density of 950 MHz radiation does not affect long-term potentiation in rat dentate gyrus. Iranian Journal of radiation Research, 5 (3), 119-124.
-
41. Gökçek-Saraç, Ç., Er, H., Kencebay Manas, C., Kantar Gok, D., Özen, Ş., & Derin, N. (2017). Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway. International Journal of Radiation Biology, 93(9), 980-989. DOI: 10.1080/09553002.2017.1337279
-
42. Narayanan, S. N., Mohapatra, N., John, P., Nalini, K., Kumar, R. S., Nayak, S. B., & Bhat, P. G. (2018). Radiofrequency electromagnetic radiation exposure effects on amygdala morphology, place preference behavior and brain caspase-3 activity in rats. Environmental Toxicology and Pharmacology, 58, 220-229. DOI: 10.1016/j.etap.2018.01.009
-
43. Maskey, D., Pradhan, J., Aryal, B., Lee, C. M., Choi, I. Y., Park, K. S., Kim, S. B., Kim, H. G., & Kim, M. J. (2010). Chronic 835-MHz radiofrequency exposure to mice hippocampus alters the distribution of calbindin and GFAP immunoreactivity. Brain Research, 1346, 237-246. DOI: 10.1016/j.brainres.2010.05.045
-
44. Josselyn, S. A., & Nguyen, P. V. (2005). CREB, synapses and memory disorders: past progress and future challenges. Current Drug Targets-CNS and Neurological Disorders, 4(5), 481-497.
-
45. Silva, A. J., Kogan, J. H., Frankland, P. W., & Kida, S. (1998). CREB and memory. Annual Review of Neuroscience, 21(1), 127-148.
-
46. Kim, J. H., Lee, J. K., Kim, H. G., Kim, H. B. & Kim, H. R. (2019). Possible effects of radiofrequency electromagnetic field exposure on central nerve system. Biomolecules and Therapeutics, 27(3):265-275. DOI: 10.4062/biomolther.2018.152
Year 2025,
Volume: 12 Issue: 2, 59 - 67, 31.08.2025
Amat Abdoulie Tekanyi
,
Abdullahi Hussein Umar
Abdulhakeem Binhambali
,
Yusuf Yusha'u
,
Aliyah Temitayo Ahmed
,
Haruna Muhammad Kolo
,
Abdoulie Momodou Sunkary Tekanyi
,
Abdulazeez Muzemil
,
Aliyu Abubakar Yahaya
,
Rabiu Abdssalam Magaji
References
-
1. Chen, S., Liang, Y. C., Sun, S., Kang, S., Cheng, W., & Peng, M. (2020). Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data rate and movement speed. IEEE Wireless Communications, 27(2), 218-228. DOI: 10.1109/MWC.001.1900333
-
2. Banafaa, M., Shayea, I., Din, J., Azmi, M. H., Alashbi, A., Daradkeh, Y. I., & Alhammadi, A. (2023). 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities. Alexandria Engineering Journal, 64, 245-274. DOI:10.1016/j.aej.2022.08.017
-
3. Salih, A. A., Zeebaree, S. R., Abdulraheem, A. S., Zebari, R. R., Sadeeq, M. A., & Ahmed, O. M. (2020). Evolution of mobile wireless communication to 5G revolution. Technology Reports of Kansai University, 62(5), 2139-2151.
-
4. Bakare, B. I., & Bassey, E. E. (2021). A comparative study of the evolution of wireless communication technologies from the first generation (1G) to the fourth generation (4G). International Journal of Electronics Communication and Computer Engineering, 12(3), 73-84.
-
5. Jiang, W., & Han, B. (2024). Evolution to First-Generation (1G) Mobile Cellular Communications. In Cellular Communication Networks and Standards, 7-21.
-
6. Meese, J., & Wilken, R. (2024). Mobile media and telecommunications. In The Media and Communications in Australia, 241-251.
-
7. Abraham-Ibe, I. G. (2021). Information and communication technology (ICT) and improved method of office management/administration. African Scholar Journal of Management Science Entrepreneuship, 23, 199-214.
-
8. Ramalingam, M. (2022). Role of ICT in Telemedicine. In Geospatial Data Science in Healthcare for Society, 227-272.
-
9. Heikkinen, D. (2023). A Brief Overview of the Implications of Mobile Applications for Society. Central Asian Journal of Social Sciences and History, 4(1), 141-148.
-
10. Xia, L., Baghaie, S., & Sajadi, S. M. (2024). The digital economy: Challenges and opportunities in the new era of technology and electronic communications. Ain Shams Engineering Journal, 15(2), 102411. DOI: 10.1016/j.asej.2023.102411
-
11. Mariappan, P. M., Raghavan, D. R., Aleem, S. H. A., and Zobaa, A. F. (2016). Effects of electromagnetic interference on the functional usage of medical equipment by 2G/3G/4G cellular phones: A review. Journal of Advanced Research, 7(5), 727-738. DOI: 10.1016/j.jare.2016.04.004
-
12. Pandey, G. J., & Mehrotra, S. (2024). Exploring the use of mobile communication in achieving sustainable development goals: An Indian perspective. In Role of Science and Technology for Sustainable Future, 1, 361-373.
-
13. Gondal, A. H., Areche, F. O., Porras-Roque, M. S., Paucarmayta, A. A. M., Paucarmayta, M. H. M., Cabello, G. G. C., and Rodriguez-Deza, J. W. (2023). Fragile Effects of Mobile Phone Emitted Radiations on Agricultural Growth and Ecological Systems. Reviews in Agricultural Science, 11, 137-155.
-
14. Matthew, U. O., Bakare, K. M., Oyekunle, D., Nkeiruka, A. M., & Ebong, G. N. (2024). Environmental health ecosystem sustainability in the era of electromagnetic radiation contamination. Journal of Community Medicine and Public Health Reports, 5(2), 1-10. DOI: 10.38207/JCMPHR/2024/JAN05020418
-
15. Kennedy, M. B. (2016). Synaptic signaling in learning and memory. Cold Spring Harbor Perspectives in Biology, 8(2), a016824.
-
16. Hu, C., Zuo, H., & Li, Y. (2021). Effects of radiofrequency electromagnetic radiation on neurotransmitters in the brain. Frontiers in Public Health, 9, 691880.
-
17. Kim, J. H., Kim, H. J., Yu, D. H., Kweon, H. S., Huh, Y. H., & Kim, H. R. (2017). Changes in numbers and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequency-electromagnetic field. PLoS One, 12(10), e0186416. DOI: 10.1371/journal.pone.0186416
-
18. Wang, K., Lu, J. M., Xing, Z. H., Zhao, Q. R., Hu, L. Q., Xue, L., Zhang, J., & Mei, Y. A. (2017). Effect of 1.8 GHz radiofrequency electromagnetic radiation on novel object associative recognition memory in mice. Scientific Reports, 7(1), 44521. DOI: 10.1038/srep44521
-
19. Schapiro, A. C., Reid, A. G., Morgan, A., Manoach, D. S., Verfaellie, M., & Stickgold, R. (2019). The hippocampus is necessary for the consolidation of a task that does not require the hippocampus for initial learning. Hippocampus, 29(11), 1091-1100.
-
20. Khan, M. J., Jamil, B., and Sethi, A. (2020). Learning based on principles of cognitivism. Journal of Ayub Medical College Abbottabad, 32(4), 585-587.
-
21. Asma, S. K., Ambi, A. A., Hajara, I., & Aliyu, I. I. (2020). Antifertility studies on the stem–bark of detarium senegalense JF gmelin (fabaceae) on female mice. Journal of Pharmaceutical Development and Industrial Pharmacy, 2(3), 1-4.
-
22. Akakin, D., Tok, O. E., Anil, D., Akakin, A., Sirvanci, S., Sener, G., & Ercan, F. (2021). Electromagnetic waves from mobile phones may affect rat brain during development. Turkish Neurosurgery, 31, 412-421. DOI:10.5137/1019-5149.JTN.31665-20.2
-
23. Magaji, R. A., Umar, A. H., Mukhtar, A. I., Yusha’u, Y., Tekanyi, A. A., Kolo, H. M. John, H. M., Hayatuddeen, A. I., Ya’u, F., & Idris, Y. (2022). Exogenous glutathione prevents mobile phone radiations-induced neurobehavioural deficits in mice via central antioxidant pathway. Journal of African Association of Physiological Sciences, 10(1), 13-23.
-
24. Okur, Z. H., & Sağir, D. (2021). Effects of cellular phone electromagnetic field exposure on the hippocampi of rats in childhood and adolescence. Neurological Sciences and Neurophysiology, 38(2), 135-142.
-
25. King, D. L., & Arendash, G. W. (2002). Behavioral characterization of the Tg2576 transgenic model of Alzheimer's disease through 19 months. Physiology and Behavior, 75(5), 627-642.
-
26. Kraeuter, A. K., Guest, P. C., & Sarnyai, Z. (2019). The Y-maze for assessment of spatial working and reference memory in mice. Pre-clinical models: Techniques and protocols, 105-111.
-
27. Zhang, R., Xue, G., Wang, S., Zhang, L., Shi, C., & Xie, X. (2012). Novel object recognition as a facile behavior test for evaluating drug effects in AβPP/PS1 Alzheimer's disease mouse model. Journal of Alzheimer's Disease, 31(4), 801-812. DOI: 10.3233/JAD-2012-120151
-
28. Yusha'u, Y., Hanafi, A. A., & Adam, U. M. (2023). Antidepressant-Like effects of Cinnamomum verum on open-space forced swim-induced depression in mice. Nigerian Journal of Physiological Sciences, 38(2), 223-227. DOI: 10.54548/njps.v38i2.11
-
29. Komada, M., Takao, K. & Miyakawa, T. (2008). Elevated plus maze for mice. Journal of Visualized Experiment, 22, 1088.
-
30. Cain, D. P., Saucier, D., Hall, J., Hargreaves, E. L. & Boon, F. (1996). Detailed behavioral analysis of water maze acquisition under APV or CNQX: Contribution of sensorimotor disturbances to drug-induced acquisition deficits. Behavioral Neuroscience, 110, 86-102. DOI:10.1037//0735-7044.110.1.86
-
31. Reddy, D. S., Li, Y., Qamari, T., & Ramakrishnan, S. (2024). Behavioral assays for comprehensive evaluation of cognitive and neuropsychiatric comorbidities of traumatic brain injury and chronic neurological disorders. Current Protocols, 4(10), e70019. DOI: 10.1002/cpz1.70019
-
32. Fragopoulou, A. F., Miltiadous, P., Stamatakis, A., Stylianopoulou, F., Koussoulakos, S. L., & Margaritis, L. H. (2010). Whole body exposure with GSM 900 MHz affects spatial memory in mice. Pathophysiology, 17(3), 179-187. DOI: 10.1016/j.pathophys.2009.11.002
-
33. Ntzouni, M. P., Stamatakis, A., Stylianopoulou, F., & Margaritis, L. H. (2011). Short-term memory in mice is affected by mobile phone radiation. Pathophysiology, 18(3), 193-199.
-
34. Ikinci, A., Odaci, E., Yildirim, M., Kaya, H., Akça, M., Hanci, H., Asian, A., Sonmez, O. F., & Bas, O. (2013). The effects of prenatal exposure to a 900 megahertz electromagnetic field on hippocampus morphology and learning behavior in rat pups. NeuroQuantology, 11(4), 582-590. DOI: 10.14704/nq.2013.11.4.699
-
35. Qubty, D., Schreiber, S., Rubovitch, V., Boag, A., & Pick, C. G. (2021). No significant effects of cellphone electromagnetic radiation on mice memory or anxiety: some mixed effects on traumatic brain injured mice. Neurotrauma Reports, 2(1), 381-390. DOI: 10.1089/neur.2021.0009
-
36. Keleş, A. İ., Yıldırım, M., Gedikli, Ö., Çolakoğlu, S., Kaya, H., Baş, O., Sinmez, O. F., & Odacı, E. (2018). The effects of a continuous 1-ha day 900-MHz electromagnetic field applied throughout early and mid-adolescence on hippocampus morphology and learning behavior in late adolescent male rats. Journal of Chemical Neuroanatomy, 94, 46-53. DOI: 10.1016/j.jchemneu.2018.08.006
-
37. Klose, M., Grote, K., Spathmann, O., Streckert, J., Clemens, M., Hansen, V. W., & Lerchl, A. (2014). Effects of early-onset radiofrequency electromagnetic field exposure (GSM 900 MHz) on behavior and memory in rats. Radiation research, 182(4), 435-447.
-
38. Movvahedi, M. M., Tavakkoli-Golpayegani, A., Mortazavi, S. A. R., Haghani, M., Razi, Z., Shojaie-Fard, M. B., Zare, M., Mina, E., Mansouabadi, L., & Mortazavi, S. M. J. (2014). Does exposure to GSM 900 MHz mobile phone radiation affect short-term memory of elementary school students?. Journal of Pediatric Neurosciences, 9(2), 121-124. DOI: 10.4103/1817-1745.139300
-
39. Tafakori, S., Farrokhi, A., Shalchyan, V., & Daliri, M. R. (2020). Investigating the impact of mobile range electromagnetic radiation on the medial prefrontal cortex of the rat during working memory. Behavioural Brain Research, 391, 112703.
-
40. Jadidi, M., Firouzabadi, S., Rashidipour, A., Bolouri, B., & Fath, E. Y. (2007). Low-power density of 950 MHz radiation does not affect long-term potentiation in rat dentate gyrus. Iranian Journal of radiation Research, 5 (3), 119-124.
-
41. Gökçek-Saraç, Ç., Er, H., Kencebay Manas, C., Kantar Gok, D., Özen, Ş., & Derin, N. (2017). Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway. International Journal of Radiation Biology, 93(9), 980-989. DOI: 10.1080/09553002.2017.1337279
-
42. Narayanan, S. N., Mohapatra, N., John, P., Nalini, K., Kumar, R. S., Nayak, S. B., & Bhat, P. G. (2018). Radiofrequency electromagnetic radiation exposure effects on amygdala morphology, place preference behavior and brain caspase-3 activity in rats. Environmental Toxicology and Pharmacology, 58, 220-229. DOI: 10.1016/j.etap.2018.01.009
-
43. Maskey, D., Pradhan, J., Aryal, B., Lee, C. M., Choi, I. Y., Park, K. S., Kim, S. B., Kim, H. G., & Kim, M. J. (2010). Chronic 835-MHz radiofrequency exposure to mice hippocampus alters the distribution of calbindin and GFAP immunoreactivity. Brain Research, 1346, 237-246. DOI: 10.1016/j.brainres.2010.05.045
-
44. Josselyn, S. A., & Nguyen, P. V. (2005). CREB, synapses and memory disorders: past progress and future challenges. Current Drug Targets-CNS and Neurological Disorders, 4(5), 481-497.
-
45. Silva, A. J., Kogan, J. H., Frankland, P. W., & Kida, S. (1998). CREB and memory. Annual Review of Neuroscience, 21(1), 127-148.
-
46. Kim, J. H., Lee, J. K., Kim, H. G., Kim, H. B. & Kim, H. R. (2019). Possible effects of radiofrequency electromagnetic field exposure on central nerve system. Biomolecules and Therapeutics, 27(3):265-275. DOI: 10.4062/biomolther.2018.152