In recent years, soft sets have been widely used in many important decision-making real-life problems. In this paper, observing the usage of soft sets in such kind of vital problems, we have introduced the bijective-unitary bijective soft rings. Firstly, we have defined and exemplified a bijective soft ring and a unitary bijective soft ring. Moreover, we have presented some applications of bijective soft rings. We have shown the usage of bijective soft rings in coding theory. In this context, we have observed that by obtaining a bijective soft ring over a finite ring, we have a coding matrix to encode a given set of messages. Besides these applicable results, we have also obtained some relations between bijective soft and classical rings.
Primary Language | English |
---|---|
Subjects | Algebra and Number Theory |
Journal Section | Articles |
Authors | |
Publication Date | April 30, 2024 |
Submission Date | April 3, 2024 |
Acceptance Date | April 29, 2024 |
Published in Issue | Year 2024 |
As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).