BibTex RIS Cite

On slightly I-continuous Multifunctions

Year 2016, Volume: 5 Issue: 11, 17 - 23, 16.08.2016

Abstract

The purpose of this paper is to introduce a new generalization of I-continuous multifunction called slightly Icontinuous multifunctions in topological spaces

References

  • M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On I-open sets and Icontinuous functions, Kyungpook Math. J., 32(1)(1992), 21-30.
  • M. Akdag, On upper and lower I-continuous multifunctions, Far East J. math. Sci., 25(1)(2007), 49-57.
  • T. Banzaru, Multifunctions and M-product spaces, Bull. Stin. Tech. Inst. Politech. Timisoara, Ser. Mat. Fiz. Mer. Teor. Apl., 17(31)(1972), 17-23.
  • E. Ekici, Slightly continuous multifunctions, International J. Math. Sci.,
  • (1)(2005), 69-78.
  • E. Ekici, Generalization of perfectly continuous, Regular set-connected and clopen functions, Acta. Math. Hungarica, 107(3)(2005), 193-206.
  • D. Jankovic and T. R. Hamlett, New Toplogies From Old Via Ideals, Amer. Math. Monthly, 97 (4) (1990), 295-310.
  • K. Kuratowski, Topology, Academic Press, New York, 1966.
  • R. A. Mahmoud and A. A. Nasef, Regularity and Normality via ideals, Bull. Malaysian Math. Sc. Soc., 24(2001), 129-136.
  • T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstratio Math.,26 (1993), 363-380.
  • T. Noiri and V. Popa, A unified theory of almost continuity for multifunctions, Sci. Stud. Res. Ser. Math. Inform., 20(1) (2010),185-214.
  • T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstraio Math., 26(1993), 363-380.
  • V. Popa, A note on weakly and almost continuous multifunctions, Univ, u Novom Sadu, Zb. Rad. Prirod-Mat. Fak. Ser. Mat., 21(1991),31-38.
  • V. Popa, Weakly continuous multifunction, Boll. Un. Mat. Ital., (5) 15-A(1978),379-388.
  • R. Staum, The algebra of bounded continuous fuctions into a nonarchimedean field, Pacific J. Math., 50(1974), 169-185.
  • R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
Year 2016, Volume: 5 Issue: 11, 17 - 23, 16.08.2016

Abstract

References

  • M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On I-open sets and Icontinuous functions, Kyungpook Math. J., 32(1)(1992), 21-30.
  • M. Akdag, On upper and lower I-continuous multifunctions, Far East J. math. Sci., 25(1)(2007), 49-57.
  • T. Banzaru, Multifunctions and M-product spaces, Bull. Stin. Tech. Inst. Politech. Timisoara, Ser. Mat. Fiz. Mer. Teor. Apl., 17(31)(1972), 17-23.
  • E. Ekici, Slightly continuous multifunctions, International J. Math. Sci.,
  • (1)(2005), 69-78.
  • E. Ekici, Generalization of perfectly continuous, Regular set-connected and clopen functions, Acta. Math. Hungarica, 107(3)(2005), 193-206.
  • D. Jankovic and T. R. Hamlett, New Toplogies From Old Via Ideals, Amer. Math. Monthly, 97 (4) (1990), 295-310.
  • K. Kuratowski, Topology, Academic Press, New York, 1966.
  • R. A. Mahmoud and A. A. Nasef, Regularity and Normality via ideals, Bull. Malaysian Math. Sc. Soc., 24(2001), 129-136.
  • T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstratio Math.,26 (1993), 363-380.
  • T. Noiri and V. Popa, A unified theory of almost continuity for multifunctions, Sci. Stud. Res. Ser. Math. Inform., 20(1) (2010),185-214.
  • T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstraio Math., 26(1993), 363-380.
  • V. Popa, A note on weakly and almost continuous multifunctions, Univ, u Novom Sadu, Zb. Rad. Prirod-Mat. Fak. Ser. Mat., 21(1991),31-38.
  • V. Popa, Weakly continuous multifunction, Boll. Un. Mat. Ital., (5) 15-A(1978),379-388.
  • R. Staum, The algebra of bounded continuous fuctions into a nonarchimedean field, Pacific J. Math., 50(1974), 169-185.
  • R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
There are 16 citations in total.

Details

Journal Section Articles
Authors

C Arivalazhai This is me

N. Rajesh This is me

Publication Date August 16, 2016
Published in Issue Year 2016 Volume: 5 Issue: 11

Cite

APA Arivalazhai, C., & Rajesh, N. (2016). On slightly I-continuous Multifunctions. Journal of New Results in Science, 5(11), 17-23.
AMA Arivalazhai C, Rajesh N. On slightly I-continuous Multifunctions. JNRS. October 2016;5(11):17-23.
Chicago Arivalazhai, C, and N. Rajesh. “On Slightly I-Continuous Multifunctions”. Journal of New Results in Science 5, no. 11 (October 2016): 17-23.
EndNote Arivalazhai C, Rajesh N (October 1, 2016) On slightly I-continuous Multifunctions. Journal of New Results in Science 5 11 17–23.
IEEE C. Arivalazhai and N. Rajesh, “On slightly I-continuous Multifunctions”, JNRS, vol. 5, no. 11, pp. 17–23, 2016.
ISNAD Arivalazhai, C - Rajesh, N. “On Slightly I-Continuous Multifunctions”. Journal of New Results in Science 5/11 (October 2016), 17-23.
JAMA Arivalazhai C, Rajesh N. On slightly I-continuous Multifunctions. JNRS. 2016;5:17–23.
MLA Arivalazhai, C and N. Rajesh. “On Slightly I-Continuous Multifunctions”. Journal of New Results in Science, vol. 5, no. 11, 2016, pp. 17-23.
Vancouver Arivalazhai C, Rajesh N. On slightly I-continuous Multifunctions. JNRS. 2016;5(11):17-23.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).