Research Article
BibTex RIS Cite

Generalized R-Contraction by Using Triangular α-Orbital Admissible

Year 2021, Volume: 10 Issue: 1, 1 - 9, 30.04.2021

Abstract

This study presents Ciric type generalization of R-contraction and generalized R-contraction by using an α-orbital admissible function in metric spaces using the definition of R-contraction introduced by Roldan-Lopez-de-Hierro and Shahzad [New fixed-point theorem under R-contractions, Fixed Point Theory and Applications, 98(2015): 18 pages, 2015] and prove some fixed-point theorems for this type contractions. Thanks to these theorems, we generalize some known results.

References

  • S. Banach, Sur les operation dans les ensembles abstraits et leur application auxequeations integrales, Fundementa Matheaticae, 3, (1922) 133–181.
  • W-S Du, F. Khojasteh, New results and generalizations for approximate fixed-point property and their applications, Abstract and Applied Analysis, 2014, (2014) Article ID: 581267, 1–9.
  • E. Karapınar, E. Kumam, P. Salimi, On α-ψ-Meir Keeler contractive mappings, Fixed Point Theory and Applications, 2013, (2013) Article Number: 323, 1–21.
  • O. Popescu, Some new fixed-point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory and Applications, 2014, (2014) Article Number: 190, 1–12.
  • H. Şahin, Best proximity point theory on vector metric spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), (2021) 130–142.
  • A. Meir, E. Keeler, A theorem on contraction mappings, Journal of Mathematical Analysis and Applications, 28, (1969) 326–329.
  • F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed-point theory for simulation functions, Filomat, 29, (2015) 1189–1194.
  • A. F. Roldan Lopez de Hierro, E. Karapınar, C. Roldan Lopez de Hierro, J. Martinez-Moreno, Coincidence point theorems on metric space via simulation functions, Journal of Computational Applied Mathematics, 275, (2015) 345–355.
  • A. F. Roldan Lopez de Hierro, N. Shahzad, New fixed-point theorem under R-contractions, Fixed Point Theory and Applications, 2015, (2015) Article Number: 98, 1–18.
  • M. Geraghty, On contractive mappings, Proceedings of the American Mathematical Society, 40, (1973) 604–608.
  • I. A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58, (2003) 191–219.
  • B. Samet, C. Vetro, and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications, 75(4), (2012) 2154–2165.
Year 2021, Volume: 10 Issue: 1, 1 - 9, 30.04.2021

Abstract

References

  • S. Banach, Sur les operation dans les ensembles abstraits et leur application auxequeations integrales, Fundementa Matheaticae, 3, (1922) 133–181.
  • W-S Du, F. Khojasteh, New results and generalizations for approximate fixed-point property and their applications, Abstract and Applied Analysis, 2014, (2014) Article ID: 581267, 1–9.
  • E. Karapınar, E. Kumam, P. Salimi, On α-ψ-Meir Keeler contractive mappings, Fixed Point Theory and Applications, 2013, (2013) Article Number: 323, 1–21.
  • O. Popescu, Some new fixed-point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory and Applications, 2014, (2014) Article Number: 190, 1–12.
  • H. Şahin, Best proximity point theory on vector metric spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), (2021) 130–142.
  • A. Meir, E. Keeler, A theorem on contraction mappings, Journal of Mathematical Analysis and Applications, 28, (1969) 326–329.
  • F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed-point theory for simulation functions, Filomat, 29, (2015) 1189–1194.
  • A. F. Roldan Lopez de Hierro, E. Karapınar, C. Roldan Lopez de Hierro, J. Martinez-Moreno, Coincidence point theorems on metric space via simulation functions, Journal of Computational Applied Mathematics, 275, (2015) 345–355.
  • A. F. Roldan Lopez de Hierro, N. Shahzad, New fixed-point theorem under R-contractions, Fixed Point Theory and Applications, 2015, (2015) Article Number: 98, 1–18.
  • M. Geraghty, On contractive mappings, Proceedings of the American Mathematical Society, 40, (1973) 604–608.
  • I. A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58, (2003) 191–219.
  • B. Samet, C. Vetro, and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications, 75(4), (2012) 2154–2165.
There are 12 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ferhan Şola Erduran 0000-0002-9433-1016

Publication Date April 30, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

APA Şola Erduran, F. (2021). Generalized R-Contraction by Using Triangular α-Orbital Admissible. Journal of New Results in Science, 10(1), 1-9.
AMA Şola Erduran F. Generalized R-Contraction by Using Triangular α-Orbital Admissible. JNRS. April 2021;10(1):1-9.
Chicago Şola Erduran, Ferhan. “Generalized R-Contraction by Using Triangular α-Orbital Admissible”. Journal of New Results in Science 10, no. 1 (April 2021): 1-9.
EndNote Şola Erduran F (April 1, 2021) Generalized R-Contraction by Using Triangular α-Orbital Admissible. Journal of New Results in Science 10 1 1–9.
IEEE F. Şola Erduran, “Generalized R-Contraction by Using Triangular α-Orbital Admissible”, JNRS, vol. 10, no. 1, pp. 1–9, 2021.
ISNAD Şola Erduran, Ferhan. “Generalized R-Contraction by Using Triangular α-Orbital Admissible”. Journal of New Results in Science 10/1 (April 2021), 1-9.
JAMA Şola Erduran F. Generalized R-Contraction by Using Triangular α-Orbital Admissible. JNRS. 2021;10:1–9.
MLA Şola Erduran, Ferhan. “Generalized R-Contraction by Using Triangular α-Orbital Admissible”. Journal of New Results in Science, vol. 10, no. 1, 2021, pp. 1-9.
Vancouver Şola Erduran F. Generalized R-Contraction by Using Triangular α-Orbital Admissible. JNRS. 2021;10(1):1-9.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).