Research Article
BibTex RIS Cite

Square numbers, square pyramidal numbers, and generalized Fibonacci polynomials

Year 2022, Volume: 11 Issue: 1, 91 - 99, 30.04.2022
https://doi.org/10.54187/jnrs.1105346

Abstract

In this paper, we derive two interesting formulas for square and square pyramidal numbers. We focus on the linear recurrence relation with constant coefficients for square and square pyramidal numbers. Then we deal with the relationship between generalized Fibonacci polynomials and these numbers. Also, we give some determinant representations of these numbers.

References

  • OEIS, The on-line encyclopedia of integer sequences, Retrieved April 15, 2022, https://oeis.org/A000290.
  • OEIS, The on-line encyclopedia of integer sequences, Retrieved April 15, 2022, https://oeis.org/A000330.
  • C. Alsina, R. B. Nelsen, A mathematical space odyssey: Solid geometry in the 21st century (the dolciani mathematical expositions), Mathematical Association of America, Washington, DC, 2015.
  • J. H. Conway, R. Guy, The book of numbers, Springer, 1998.
  • R. Grassl, 79.33 the squares do fit!, TheMathematical Gazette, 79(485), (1995) 361–364.
  • P. J. Federico, Descartes on polyhedra: A study of the de solidorum elementis, sources in the history of mathematics and physical sciences, Springer, 1982.
  • T. L. Heath, The works of archimedes, Cambridge University Press, 1897.
  • L. E. Sigler, Fibonacci’s liber abaci, Springer, New York, 2002.
  • W. S. Anglin, The square pyramid puzzle, The American Mathematical Monthly, 97(2), (1990) 120–124.
  • M. Parker, Things to make and do in the fourth dimension: A mathematician’s journey through narcissistic numbers, optimal dating algorithms, at least two kinds of infinity, and more, Farrar, Straus and Giroux, New York, 2015.
  • B. Babcock, A. V. Tuyl, Revisiting the spreading and covering numbers, The Australasian Journal of Combinatorics, 56, (2013) 77–84.
  • R. P. Agarwal, Pythagoreans figurative numbers: The beginning of number theory and summation of series, Journal of Applied Mathematics and Physics, 9, (2021) 2038–2113.
  • OEIS, The on-line encyclopedia of integer sequences, Retrieved April 15, 2022, https://oeis.org/wiki/Index_to_OEIS: Section_Rec.
  • T. Machenry, A subgroup of the group of units in the ring of arithmetic functions, RockyMountain Journal of Mathematics, 29, (1999) 1055–1065.
  • T. Machenry, K. Wong, Degree k linear recursions mod (pfields, RockyMountain Journal of Mathematics, 41(4), (2011) 1303–1327.
  • H. Li, T. Machenry, Permanents and determinants, weighted isobaric polynomials, and integer sequences, Journal of Integer Sequences, 16, (2013) Article 13.3.5.
  • T. Machenry, Generalized fibonacci and lucas polynomials and multiplicative arithmetic functions, Fibonacci Quarterly, 38(2), (2000) 167–173.
  • T. Machenry, G. Tudose, Reflections on symmetric polynomials and arithemetic functions, Rocky Mountain Journal ofMathematics, 35(3), (2006) 901–928.
  • N. D. Cahill, J. R. D’Errico, D. A. Narayan, J. Y. Narayan, Fibonacci determinants, The College Mathematics Journal, 33, (2002) 221–225.
Year 2022, Volume: 11 Issue: 1, 91 - 99, 30.04.2022
https://doi.org/10.54187/jnrs.1105346

Abstract

References

  • OEIS, The on-line encyclopedia of integer sequences, Retrieved April 15, 2022, https://oeis.org/A000290.
  • OEIS, The on-line encyclopedia of integer sequences, Retrieved April 15, 2022, https://oeis.org/A000330.
  • C. Alsina, R. B. Nelsen, A mathematical space odyssey: Solid geometry in the 21st century (the dolciani mathematical expositions), Mathematical Association of America, Washington, DC, 2015.
  • J. H. Conway, R. Guy, The book of numbers, Springer, 1998.
  • R. Grassl, 79.33 the squares do fit!, TheMathematical Gazette, 79(485), (1995) 361–364.
  • P. J. Federico, Descartes on polyhedra: A study of the de solidorum elementis, sources in the history of mathematics and physical sciences, Springer, 1982.
  • T. L. Heath, The works of archimedes, Cambridge University Press, 1897.
  • L. E. Sigler, Fibonacci’s liber abaci, Springer, New York, 2002.
  • W. S. Anglin, The square pyramid puzzle, The American Mathematical Monthly, 97(2), (1990) 120–124.
  • M. Parker, Things to make and do in the fourth dimension: A mathematician’s journey through narcissistic numbers, optimal dating algorithms, at least two kinds of infinity, and more, Farrar, Straus and Giroux, New York, 2015.
  • B. Babcock, A. V. Tuyl, Revisiting the spreading and covering numbers, The Australasian Journal of Combinatorics, 56, (2013) 77–84.
  • R. P. Agarwal, Pythagoreans figurative numbers: The beginning of number theory and summation of series, Journal of Applied Mathematics and Physics, 9, (2021) 2038–2113.
  • OEIS, The on-line encyclopedia of integer sequences, Retrieved April 15, 2022, https://oeis.org/wiki/Index_to_OEIS: Section_Rec.
  • T. Machenry, A subgroup of the group of units in the ring of arithmetic functions, RockyMountain Journal of Mathematics, 29, (1999) 1055–1065.
  • T. Machenry, K. Wong, Degree k linear recursions mod (pfields, RockyMountain Journal of Mathematics, 41(4), (2011) 1303–1327.
  • H. Li, T. Machenry, Permanents and determinants, weighted isobaric polynomials, and integer sequences, Journal of Integer Sequences, 16, (2013) Article 13.3.5.
  • T. Machenry, Generalized fibonacci and lucas polynomials and multiplicative arithmetic functions, Fibonacci Quarterly, 38(2), (2000) 167–173.
  • T. Machenry, G. Tudose, Reflections on symmetric polynomials and arithemetic functions, Rocky Mountain Journal ofMathematics, 35(3), (2006) 901–928.
  • N. D. Cahill, J. R. D’Errico, D. A. Narayan, J. Y. Narayan, Fibonacci determinants, The College Mathematics Journal, 33, (2002) 221–225.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Adem Şahin 0000-0001-5739-4117

Early Pub Date April 30, 2022
Publication Date April 30, 2022
Published in Issue Year 2022 Volume: 11 Issue: 1

Cite

APA Şahin, A. (2022). Square numbers, square pyramidal numbers, and generalized Fibonacci polynomials. Journal of New Results in Science, 11(1), 91-99. https://doi.org/10.54187/jnrs.1105346
AMA Şahin A. Square numbers, square pyramidal numbers, and generalized Fibonacci polynomials. JNRS. April 2022;11(1):91-99. doi:10.54187/jnrs.1105346
Chicago Şahin, Adem. “Square Numbers, Square Pyramidal Numbers, and Generalized Fibonacci Polynomials”. Journal of New Results in Science 11, no. 1 (April 2022): 91-99. https://doi.org/10.54187/jnrs.1105346.
EndNote Şahin A (April 1, 2022) Square numbers, square pyramidal numbers, and generalized Fibonacci polynomials. Journal of New Results in Science 11 1 91–99.
IEEE A. Şahin, “Square numbers, square pyramidal numbers, and generalized Fibonacci polynomials”, JNRS, vol. 11, no. 1, pp. 91–99, 2022, doi: 10.54187/jnrs.1105346.
ISNAD Şahin, Adem. “Square Numbers, Square Pyramidal Numbers, and Generalized Fibonacci Polynomials”. Journal of New Results in Science 11/1 (April 2022), 91-99. https://doi.org/10.54187/jnrs.1105346.
JAMA Şahin A. Square numbers, square pyramidal numbers, and generalized Fibonacci polynomials. JNRS. 2022;11:91–99.
MLA Şahin, Adem. “Square Numbers, Square Pyramidal Numbers, and Generalized Fibonacci Polynomials”. Journal of New Results in Science, vol. 11, no. 1, 2022, pp. 91-99, doi:10.54187/jnrs.1105346.
Vancouver Şahin A. Square numbers, square pyramidal numbers, and generalized Fibonacci polynomials. JNRS. 2022;11(1):91-9.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).