Research Article
BibTex RIS Cite
Year 2022, Volume: 11 Issue: 2, 132 - 142, 31.08.2022
https://doi.org/10.54187/jnrs.1143905

Abstract

References

  • G. E. Andrews, R. Askey, R. Roy, Special Functions. Cambridge University Press, Cambridge, 1999.
  • M. A. Chaudhry, S. M. Zubair, On a Class of Incomplete Gamma with Applications. CRC Press (Chapman and Hall), Boca Raton, FL, 2002.
  • E. D. Rainville, Special Functions. Macmillan Company, New York, 1960, Reprinted by Chelsea Publishing Company, Bronx, NewYork, 1971.
  • R. Şahin, O. Yağcı, Note on the certain special functions representable as $\Phi$, Journal of Fractional Calculus and Applications, 11(2), (2020) 1-11.
  • M. A. Chaudhry, A. Qadir, M. Raque, S. M. Zubair, Extension of Euler's beta function, Journal of Computational and Applied Mathematics, 78(1), (1997) 19-32.
  • E. Özergin, M. A. Özarslan, A. Altın, Extension of gamma, beta and hypergeometric functions, Journal of Computational and Applied Mathematics, 235(16), (2011) 4601-4610.
  • R. K. Parmar, P. Chopra, Generalization of the incomplete extended beta function and beta distribution, International Journal of Engineering Research and Development, 2(4), (2012) 58-62.
  • D. Lee, A. K. Rathie, R. K. Parmar, Y. S. Kim, Generalization of extended beta function, hypergeometric and confluent hypergeometric Functions, Honam Mathematical Journal, 33(2), (2011) 187-206.
  • J. Choi, A. K. Rathie, R. K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Mathematical Journal, 33, (2014) 357-385.
  • E. Ata, İ. O. Kıymaz, A study on certain properties of generalized special functions defined by Fox-Wright function, Applied Mathematics and Nonlinear Sciences, 5(1), (2020) 147-162.
  • A. Fernandez, C. Ustaoğlu, M. A. Özarslan, On the analytical development of incomplete Riemann-Liouville fractional calculus, Turkish Journal of Mathematics, 45(3), (2021) 1418-1443.
  • M. J. Luo, G. V. Milovanovic, P. Agarwal, Some results on the extended beta and extended hypergeometric functions, Applied Mathematics and Computation, 248, (2014) 631-651.
  • M. A. Özarslan, C. Ustaoğlu, Incomplete Caputo fractional derivative operators, Advances in Difference Equations, 2018, (2018) Article Number: 209, 1-18.
  • M. A. Özarslan, C. Ustaoğlu, Extension of incomplete gamma, beta and hypergeometric functions, Progress in Fractional Differentiation and Applications, 5(1), (2019) 21-35.
  • M. A. Özarslan, C. Ustaoğlu, Some incomplete hypergeometric functions and incomplete Riemann-Liouville fractional integral operators, Mathematics, 7(5), (2019) 1-17.
  • M. A. Özarslan, C. Ustaoğlu, Extended incomplete version of hypergeometric functions, Filomat, 34(2), (2020) 653-662.
  • M. A. Özarslan, C. Ustaoğlu, Extended incomplete Riemann-Liouville fractional integral operators and related special functions, Electronic Research Archive, 30(5), (2022), 1723-1747.
  • R. K. Parmar, A new generalization of gamma, beta, hypergeometric and confluent hypergeometric functions, Le Mathematiche, 68, (2013) 33-52.
  • R. Şahin, O. Yağcı, A new generalization of Pochhammer symbol and its applications, Applied Mathematics and Nonlinear Sciences, 5(1), (2020) 255-266.
  • R. Şahin, O. Yağcı, Fractional calculus of the extended hypergeometric function, Applied Mathematics and Nonlinear Sciences, 5(1), (2020) 269-284.
  • U. M. Abubakar, New generalized beta function associated with the Fox-Wright function, Journal of Fractional Calculus and Application, 12(2), (2021) 204-227.
  • U. M. Abubakar, A comparative analysis of modified extended fractional derivative and integral operators via modified extended beta function with applications to generating functions, Çankaya University Journal of Science and Engineering, 19(1), (2022) 40-50.
  • U. M. Abubakar, H. M. Tahir, I. S. Abdulmumini, Extended gamma, beta and hypergeometric functions: Properties and applications: Extended gamma, beta and hypergeometric functions, Journal of Kerala Statistical Association, 32(1), (2021) 18-40.
  • R. Şahin, O. Yağcı, M. B. Yağbasan, A. Çetinkaya, İ. O. Kıymaz, Further generalizations of gamma, beta and related functions, Journal of Inequalities and Special Functions, 9(4), (2018) 1-7.

Some generalised extended incomplete beta functions and applications

Year 2022, Volume: 11 Issue: 2, 132 - 142, 31.08.2022
https://doi.org/10.54187/jnrs.1143905

Abstract

This paper introduces generalised incomplete beta functions defined by the generalised beta function. Firstly, we provide some of the generalised beta function's basic properties, such as integral representations, summation formulas, Mellin transform, and beta distribution. We then present several fundamental properties, such as integral representations, summation formulas, and recurrence relations with the help of the generalised incomplete beta functions.

References

  • G. E. Andrews, R. Askey, R. Roy, Special Functions. Cambridge University Press, Cambridge, 1999.
  • M. A. Chaudhry, S. M. Zubair, On a Class of Incomplete Gamma with Applications. CRC Press (Chapman and Hall), Boca Raton, FL, 2002.
  • E. D. Rainville, Special Functions. Macmillan Company, New York, 1960, Reprinted by Chelsea Publishing Company, Bronx, NewYork, 1971.
  • R. Şahin, O. Yağcı, Note on the certain special functions representable as $\Phi$, Journal of Fractional Calculus and Applications, 11(2), (2020) 1-11.
  • M. A. Chaudhry, A. Qadir, M. Raque, S. M. Zubair, Extension of Euler's beta function, Journal of Computational and Applied Mathematics, 78(1), (1997) 19-32.
  • E. Özergin, M. A. Özarslan, A. Altın, Extension of gamma, beta and hypergeometric functions, Journal of Computational and Applied Mathematics, 235(16), (2011) 4601-4610.
  • R. K. Parmar, P. Chopra, Generalization of the incomplete extended beta function and beta distribution, International Journal of Engineering Research and Development, 2(4), (2012) 58-62.
  • D. Lee, A. K. Rathie, R. K. Parmar, Y. S. Kim, Generalization of extended beta function, hypergeometric and confluent hypergeometric Functions, Honam Mathematical Journal, 33(2), (2011) 187-206.
  • J. Choi, A. K. Rathie, R. K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Mathematical Journal, 33, (2014) 357-385.
  • E. Ata, İ. O. Kıymaz, A study on certain properties of generalized special functions defined by Fox-Wright function, Applied Mathematics and Nonlinear Sciences, 5(1), (2020) 147-162.
  • A. Fernandez, C. Ustaoğlu, M. A. Özarslan, On the analytical development of incomplete Riemann-Liouville fractional calculus, Turkish Journal of Mathematics, 45(3), (2021) 1418-1443.
  • M. J. Luo, G. V. Milovanovic, P. Agarwal, Some results on the extended beta and extended hypergeometric functions, Applied Mathematics and Computation, 248, (2014) 631-651.
  • M. A. Özarslan, C. Ustaoğlu, Incomplete Caputo fractional derivative operators, Advances in Difference Equations, 2018, (2018) Article Number: 209, 1-18.
  • M. A. Özarslan, C. Ustaoğlu, Extension of incomplete gamma, beta and hypergeometric functions, Progress in Fractional Differentiation and Applications, 5(1), (2019) 21-35.
  • M. A. Özarslan, C. Ustaoğlu, Some incomplete hypergeometric functions and incomplete Riemann-Liouville fractional integral operators, Mathematics, 7(5), (2019) 1-17.
  • M. A. Özarslan, C. Ustaoğlu, Extended incomplete version of hypergeometric functions, Filomat, 34(2), (2020) 653-662.
  • M. A. Özarslan, C. Ustaoğlu, Extended incomplete Riemann-Liouville fractional integral operators and related special functions, Electronic Research Archive, 30(5), (2022), 1723-1747.
  • R. K. Parmar, A new generalization of gamma, beta, hypergeometric and confluent hypergeometric functions, Le Mathematiche, 68, (2013) 33-52.
  • R. Şahin, O. Yağcı, A new generalization of Pochhammer symbol and its applications, Applied Mathematics and Nonlinear Sciences, 5(1), (2020) 255-266.
  • R. Şahin, O. Yağcı, Fractional calculus of the extended hypergeometric function, Applied Mathematics and Nonlinear Sciences, 5(1), (2020) 269-284.
  • U. M. Abubakar, New generalized beta function associated with the Fox-Wright function, Journal of Fractional Calculus and Application, 12(2), (2021) 204-227.
  • U. M. Abubakar, A comparative analysis of modified extended fractional derivative and integral operators via modified extended beta function with applications to generating functions, Çankaya University Journal of Science and Engineering, 19(1), (2022) 40-50.
  • U. M. Abubakar, H. M. Tahir, I. S. Abdulmumini, Extended gamma, beta and hypergeometric functions: Properties and applications: Extended gamma, beta and hypergeometric functions, Journal of Kerala Statistical Association, 32(1), (2021) 18-40.
  • R. Şahin, O. Yağcı, M. B. Yağbasan, A. Çetinkaya, İ. O. Kıymaz, Further generalizations of gamma, beta and related functions, Journal of Inequalities and Special Functions, 9(4), (2018) 1-7.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Oğuz Yağcı 0000-0001-9902-8094

Recep Şahin 0000-0001-5713-3830

İ. Onur Kıymaz 0000-0003-2375-0202

Ayşegül Çetinkaya 0000-0002-1093-5497

Publication Date August 31, 2022
Published in Issue Year 2022 Volume: 11 Issue: 2

Cite

APA Yağcı, O., Şahin, R., Kıymaz, İ. O., Çetinkaya, A. (2022). Some generalised extended incomplete beta functions and applications. Journal of New Results in Science, 11(2), 132-142. https://doi.org/10.54187/jnrs.1143905
AMA Yağcı O, Şahin R, Kıymaz İO, Çetinkaya A. Some generalised extended incomplete beta functions and applications. JNRS. August 2022;11(2):132-142. doi:10.54187/jnrs.1143905
Chicago Yağcı, Oğuz, Recep Şahin, İ. Onur Kıymaz, and Ayşegül Çetinkaya. “Some Generalised Extended Incomplete Beta Functions and Applications”. Journal of New Results in Science 11, no. 2 (August 2022): 132-42. https://doi.org/10.54187/jnrs.1143905.
EndNote Yağcı O, Şahin R, Kıymaz İO, Çetinkaya A (August 1, 2022) Some generalised extended incomplete beta functions and applications. Journal of New Results in Science 11 2 132–142.
IEEE O. Yağcı, R. Şahin, İ. O. Kıymaz, and A. Çetinkaya, “Some generalised extended incomplete beta functions and applications”, JNRS, vol. 11, no. 2, pp. 132–142, 2022, doi: 10.54187/jnrs.1143905.
ISNAD Yağcı, Oğuz et al. “Some Generalised Extended Incomplete Beta Functions and Applications”. Journal of New Results in Science 11/2 (August 2022), 132-142. https://doi.org/10.54187/jnrs.1143905.
JAMA Yağcı O, Şahin R, Kıymaz İO, Çetinkaya A. Some generalised extended incomplete beta functions and applications. JNRS. 2022;11:132–142.
MLA Yağcı, Oğuz et al. “Some Generalised Extended Incomplete Beta Functions and Applications”. Journal of New Results in Science, vol. 11, no. 2, 2022, pp. 132-4, doi:10.54187/jnrs.1143905.
Vancouver Yağcı O, Şahin R, Kıymaz İO, Çetinkaya A. Some generalised extended incomplete beta functions and applications. JNRS. 2022;11(2):132-4.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).