The basis property of generalized eigenfunctions for one boundary value problem with discontinuities at two interior points
Year 2024,
Volume: 13 Issue: 3, 221 - 231, 31.12.2024
Hayati Olğar
,
Oktay Mukhtarov
Abstract
In this study, we consider a spectral problem for one boundary value problem with discontinuities at two interior points. The boundary conditions involve a spectral parameter. We consider some compact, positive, self-adjoint operators to reduce the spectral problem to an operator-pencil equation. Then, it was proven that this operator-pencil is positive definite, the spectrum is discrete, and the system of weak eigenfunctions forms a Riesz basis of the appropriate Sobolev space.
Ethical Statement
No approval from the Board of Ethics is required.
References
- B. P. Belinskiy, J. W. Hiestand, J. V. Matthews, Piecewise uniform optimal design of a bar with an attached mass, Electronic Journal of Differential Equations 2015 (2015) Article Number 206 17 pages.
- N. J. Guliyev, Schr¨odinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter, Journal of Mathematical Physics 60 (6) (2019) 063501.
- D. B. Hinton, An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition, Quarterly Journal of Mathematics (30) (1979) 33–42.
- A. Kawano, A. Morassi and R. Zaera, Detecting a prey in a spider orb-web from in-plane vibration, SIAM Journal on Applied Mathematics 81 (6) (2021) 2297-2322.
- J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary conditions, Mathematische Zeitschrift 133 (1973) 301–312.
- A. Yakar, Z. Akdoğan, On the fundamental solutions of a discontinuous fractional boundary value problem, Advances in Difference Equations, 2017 (2017) Article ID 378 15 pages.
- Z. Akdoğan, A. Yakar, M. Demirci, Discontinuous fractional Sturm-Liouville problems with transmission conditions, Applied Mathematics and Computation 350 (2019) 1–10.
- B. P. Allahverdiev, H. Tuna, Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions, Electronic Journal of Differential Equations 3 (2019) 1–10.
- M. Yücel, O. Mukhtarov, K. Aydemir, Computation of eigenfunctions of nonlinear boundaryvalue-transmission problems by developing some approximate techniques, Boletim da Sociedade Paranaense de Matem´atica 3 (41) (2023) 1–12.
- P. A. Binding, P. J. Browne, B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter II, Journal of Computational and Applied Mathematics (148) (2002) 147–168.
- M. Kandemir, O. Sh. Mukhtarov, Nonlocal Sturm-Liouville problems with integral terms in the boundary conditions, Electronic Journal of Differential Equations 2017 (11) (2017) 1–12.
- Y. A. Küçükevcilioğlu, E. Bayram , G. G. ¨Ozbey, On the spectral and scattering properties of eigenparameter dependent discrete impulsive Sturm-Liouville equations, Turkish Journal of Mathematics 45(2) (2021) 988–1000.
- O. Sh. Mukhtarov, M. Yücel, K. Aydemir, A new generalization of the differential transform method for solving boundary value problems, Journal of New Results in Science 10 (2) (2021) 49–58.
- O.Sh. Mukhtarov, H. Olğar, K. Aydemir, Resolvent operator and spectrum of new type boundary value problems, Filomat 29 (7) (2015) 1671–1680.
- O. Sh. Mukhtarov, M. Yücel, K. Aydemir, Treatment a new approximation method and its justification for Sturm-Liouville problems, Complexity 2020 (2020) Article ID 8019460 8 pages.
- H. Olğar, Self-adjointness and positiveness of the differential operators generated by new type Sturm-Liouville problems, Cumhuriyet Science Journal 40 (1) (2019) 24–34.
- E. Şen, M. Açıkgöz, S. Aracı, Spectral problem for Sturm-Liouville operator with retarded argument which contains a spectral parameter in the boundary condition, Ukrainian Mathematical Journal 68(8) (2017) 1263–1277.
- E. Uğurlu, K. Taş, A new method for dissipative dynamic operator with transmission conditions, Complex Analysis and Operator Theory 12(4) (2018) 1027–1055.
- A. Wang, J. Sun, X. Hao, S. Yao, Completeness of eigenfunctions of Sturm-Liouville problems with transmission conditions, Methods and Application of Analysis 16 (3) (2009) 299–312.
- N. B. Kerimov, R. G. Poladov, Basis properties of the system of eigenfunctions in the Sturm- Liouville problem with a spectral parameter in the boundary conditions, Doklady Mathematics (2012) 85 (1) 8–13.
- O. Sh. Mukhtarov, K. Aydemir, Basis properties of the eigenfunctions of two-interval SturmLiouville problems, Analysis and Mathematical Physics 9 (2019) 1363–1382.
- H. Olğar, O. Sh. Mukhtarov, Weak eigenfunctions of two-interval Sturm-Liouville problems together with interaction conditions, Journal of Mathematical Physics 58 (2017) Article ID 042201.
- H. Olğar, O. Sh. Mukhtarov, K. Aydemir, Some properties of eigenvalues and generalized eigenvectors of one boundary value problem, Filomat 32 (3) (2018) 911–920.
- A. M. Sarsenbi, A. A. Tengaeva, On the basis properties of root functions of two generalized eigenvalue problems, Differential Equations 48 (2) (2012) 306–308.
- M. V. Keldysh, On the characteristics values and characteristics functions of a certain class of nonselfadjoint equations (in Russian), Doklady Akademii Nauk (77) (1951) 11–14.
- I. Gohberg, S. Goldberg, Basic operator theory, Birkhauser, Boston-Basel-Stuttgart, 1981.
- O. A. Ladyzhenskaia, The boundary value problems of mathematical physics, Springer-Verlag, New York 1985.
- A. S. Markus, Introduction to the spectral theory of polynomial pencils, Translation of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, 1988.
- L. Rodman, An introduction to operator polynomials, Birkha¨user Verlag, Boston, Massachusetts, 1989.
- B. P. Belinskiy, J. P. Dauer, Eigenoscillations of mechanical systems with boundary conditions containing the frequency, Quarterly of Applied Mathematics (56) (1998) 521–541.
- E. Kreyszig, Introductory functional analysis with application, New-York, 1978.
Year 2024,
Volume: 13 Issue: 3, 221 - 231, 31.12.2024
Hayati Olğar
,
Oktay Mukhtarov
References
- B. P. Belinskiy, J. W. Hiestand, J. V. Matthews, Piecewise uniform optimal design of a bar with an attached mass, Electronic Journal of Differential Equations 2015 (2015) Article Number 206 17 pages.
- N. J. Guliyev, Schr¨odinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter, Journal of Mathematical Physics 60 (6) (2019) 063501.
- D. B. Hinton, An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition, Quarterly Journal of Mathematics (30) (1979) 33–42.
- A. Kawano, A. Morassi and R. Zaera, Detecting a prey in a spider orb-web from in-plane vibration, SIAM Journal on Applied Mathematics 81 (6) (2021) 2297-2322.
- J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary conditions, Mathematische Zeitschrift 133 (1973) 301–312.
- A. Yakar, Z. Akdoğan, On the fundamental solutions of a discontinuous fractional boundary value problem, Advances in Difference Equations, 2017 (2017) Article ID 378 15 pages.
- Z. Akdoğan, A. Yakar, M. Demirci, Discontinuous fractional Sturm-Liouville problems with transmission conditions, Applied Mathematics and Computation 350 (2019) 1–10.
- B. P. Allahverdiev, H. Tuna, Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions, Electronic Journal of Differential Equations 3 (2019) 1–10.
- M. Yücel, O. Mukhtarov, K. Aydemir, Computation of eigenfunctions of nonlinear boundaryvalue-transmission problems by developing some approximate techniques, Boletim da Sociedade Paranaense de Matem´atica 3 (41) (2023) 1–12.
- P. A. Binding, P. J. Browne, B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter II, Journal of Computational and Applied Mathematics (148) (2002) 147–168.
- M. Kandemir, O. Sh. Mukhtarov, Nonlocal Sturm-Liouville problems with integral terms in the boundary conditions, Electronic Journal of Differential Equations 2017 (11) (2017) 1–12.
- Y. A. Küçükevcilioğlu, E. Bayram , G. G. ¨Ozbey, On the spectral and scattering properties of eigenparameter dependent discrete impulsive Sturm-Liouville equations, Turkish Journal of Mathematics 45(2) (2021) 988–1000.
- O. Sh. Mukhtarov, M. Yücel, K. Aydemir, A new generalization of the differential transform method for solving boundary value problems, Journal of New Results in Science 10 (2) (2021) 49–58.
- O.Sh. Mukhtarov, H. Olğar, K. Aydemir, Resolvent operator and spectrum of new type boundary value problems, Filomat 29 (7) (2015) 1671–1680.
- O. Sh. Mukhtarov, M. Yücel, K. Aydemir, Treatment a new approximation method and its justification for Sturm-Liouville problems, Complexity 2020 (2020) Article ID 8019460 8 pages.
- H. Olğar, Self-adjointness and positiveness of the differential operators generated by new type Sturm-Liouville problems, Cumhuriyet Science Journal 40 (1) (2019) 24–34.
- E. Şen, M. Açıkgöz, S. Aracı, Spectral problem for Sturm-Liouville operator with retarded argument which contains a spectral parameter in the boundary condition, Ukrainian Mathematical Journal 68(8) (2017) 1263–1277.
- E. Uğurlu, K. Taş, A new method for dissipative dynamic operator with transmission conditions, Complex Analysis and Operator Theory 12(4) (2018) 1027–1055.
- A. Wang, J. Sun, X. Hao, S. Yao, Completeness of eigenfunctions of Sturm-Liouville problems with transmission conditions, Methods and Application of Analysis 16 (3) (2009) 299–312.
- N. B. Kerimov, R. G. Poladov, Basis properties of the system of eigenfunctions in the Sturm- Liouville problem with a spectral parameter in the boundary conditions, Doklady Mathematics (2012) 85 (1) 8–13.
- O. Sh. Mukhtarov, K. Aydemir, Basis properties of the eigenfunctions of two-interval SturmLiouville problems, Analysis and Mathematical Physics 9 (2019) 1363–1382.
- H. Olğar, O. Sh. Mukhtarov, Weak eigenfunctions of two-interval Sturm-Liouville problems together with interaction conditions, Journal of Mathematical Physics 58 (2017) Article ID 042201.
- H. Olğar, O. Sh. Mukhtarov, K. Aydemir, Some properties of eigenvalues and generalized eigenvectors of one boundary value problem, Filomat 32 (3) (2018) 911–920.
- A. M. Sarsenbi, A. A. Tengaeva, On the basis properties of root functions of two generalized eigenvalue problems, Differential Equations 48 (2) (2012) 306–308.
- M. V. Keldysh, On the characteristics values and characteristics functions of a certain class of nonselfadjoint equations (in Russian), Doklady Akademii Nauk (77) (1951) 11–14.
- I. Gohberg, S. Goldberg, Basic operator theory, Birkhauser, Boston-Basel-Stuttgart, 1981.
- O. A. Ladyzhenskaia, The boundary value problems of mathematical physics, Springer-Verlag, New York 1985.
- A. S. Markus, Introduction to the spectral theory of polynomial pencils, Translation of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, 1988.
- L. Rodman, An introduction to operator polynomials, Birkha¨user Verlag, Boston, Massachusetts, 1989.
- B. P. Belinskiy, J. P. Dauer, Eigenoscillations of mechanical systems with boundary conditions containing the frequency, Quarterly of Applied Mathematics (56) (1998) 521–541.
- E. Kreyszig, Introductory functional analysis with application, New-York, 1978.