Research Article
BibTex RIS Cite
Year 2022, , 70 - 78, 31.03.2022
https://doi.org/10.53570/jnt.1080665

Abstract

References

  • S. Perlmutter, S. Gabi, G. Goldhaber, A. Goobar, D. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. Lee, R. Pain, C. R. Pennypacker, I. A. Small, R. S. E. Ellis, R. G. McMahon, B. J. Boyle, P. S. Bunclark, D. Carter, M. J. Irwin, K. Glazebrook, H. J. M. Newberg, F. A. V, T. Matheson, M. Dopita, W. J. Couch, Measurements* of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z≥0.35, The Astrophysical Journal 483 (2) (1997) 565.
  • S. Perlmutter, G. Aldering, M. Della Valle, S. Deustua, R. S. Ellis, S. Fabbro, A. Fruchter, G. Goldhaber, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, R. A. Knop, C. Lidman, R. G. McMahon, P. Nugent, R. Pain, N. Panagia, C. R. Pennypacker, P. Ruiz-Lapuente, B. Schaefer, N.Walton, Discovery of a Supernova Explosion at Half the Age of the Universe, Nature 391 (6662) (1998) 51–54.
  • S. Perlmutter, M. S. Turner, M. White, Constraining Dark Energy with Type Ia Supernovae and Large-scale Structure, Physical Review Letters 83 (4) (1999) 670.
  • D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. Nolta, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, G. S. Tucker, J. L. Weiland, E. Wollack, E. L. Wright, First-year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations: Determination of Cosmological Parameters, The Astrophysical Journal Supplement Series 148 (1) (2003) 175.
  • C. L. Bennett, M. Bay, M. Halpern, G. Hinshaw, C. Jackson, N. Jarosik, A. Kogut, M. Limon, S. Meyer, L. Page, D. N. Spergel, G. S. Tucker, D. T. Wilkinson, E. Wollack, E. L. Wright, The Microwave Anisotropy Probe* Mission, The Astrophysical Journal 583 (1) (2003) 1.
  • J.-c. Hwang, Cosmological Perturbations in Generalized Gravity Theories: Conformal Transformation, Classical and Quantum Gravity 14 (7) (1997) 1981.
  • J.-O. Gong, J.-c. Hwang, W. I. Park, M. Sasaki, Y.-S. Song, Conformal Invariance of Curvature Perturbation, Journal of Cosmology and Astroparticle Physics 2011 (09) (2011) 023.
  • J.-c. Hwang, Unified Analysis of Cosmological Perturbations in Generalized Gravity, Physical Review D 53 (2) (1996) 762.
  • J.-c. Hwang, H. Noh, Cosmological Perturbations in Generalized Gravity Theories, Physical Review D 54 (2) (1996) 1460.
  • R. Myrzakulov, L. Sebastiani, S. Vagnozzi, Inflation in f(R,ϕ) Theories and Mimetic Gravity Scenario, The European Physical Journal C 75 (9) (2015) 1–11.
  • J. Mathew, J. P. Johnson, S. Shankaranarayanan, Inflation with f(R,ϕ) in Jordan Frame, General Relativity and Gravitation 50 (7) (2018) 1–15.
  • A. Stabile, S. Capozziello, Galaxy Rotation Curves in f(R,ϕ) Gravity, Physical Review D 87 (6) (2013) 064002.
  • M. F. Shamir, A. Malik, Behavior of Anisotropic Compact Stars in f(R,ϕ) Gravity, Communications in Theoretical Physics 71 (5) (2019) 599.
  • S. Cheraghchi, F. Shojai, On the Initial Conditions of Scalar and Tensor Fluctuations in f(R,ϕ) Gravity, The European Physical Journal C 78 (5) (2018) 1–9.
  • M. Zubair, F. Kousar, S. Bahamonde, Static Spherically Symmetric Wormholes in Generalized f(R,ϕ) Gravity, The European Physical Journal Plus 133 (12) (2018) 523.
  • H. Farajollahi, M. Setare, F. Milani, F. Tayebi, Cosmic Dynamics in F(R,ϕ) Gravity, General Relativity and Gravitation 43 (6) (2011) 1657–1669.
  • A. Malik, M. Ahmad, S. Mahmood, Some Dark Energy Cosmological Models in f(R, ϕ) Gravity, New Astronomy 89 (2021) 101631.
  • A. Das, F. Rahaman, B. Guha, S. Ray, Compact Stars in f(R,T) Gravity, The European Physical Journal C 76 (12) (2016) 1–10.
  • S. Maharaj, R. Maartens, M. Maharaj, Conformal Symmetries in Static Spherically Symmetric Spacetimes, International Journal of Theoretical Physics 34 (11) (1995) 2285–2291.
  • R. Maartens, S. Maharaj, Conformal Killing Vectors in Robertson-Walker Spacetimes, Classical and Quantum Gravity 3 (5) (1986) 1005.
  • A. Manjonjo, S. Maharaj, S. Moopanar, Static Models with Conformal Symmetry, Classical and Quantum Gravity 35 (4) (2018) 045015.
  • D. K. Matondo, S. Maharaj, S. Ray, Relativistic Stars with Conformal Symmetry, The European Physical Journal C 78 (6) (2018) 1–13.
  • S. Maurya, S. Maharaj, D. Deb, Generalized Anisotropic Models for Conformal Symmetry, The European Physical Journal C 79 (2) (2019) 1–15.
  • D. Shee, F. Rahaman, B. Guha, S. Ray, Anisotropic Stars with Non-static Conformal Symmetry, Astrophysics and Space Science 361 (5) (2016) 1–10.
  • J.-c. Hwang, Cosmological Perturbations in Generalised Gravity Theories: Formulation, Classical and Quantum Gravity 7 (9) (1990) 1613.
  • G. Lambiase, M. Sakellariadou, A. Stabile, A. Stabile, Astrophysical Constraints on Extended Gravity Models, Journal of Cosmology and Astroparticle Physics 2015 (07) (2015) 003.
  • L. Landau, E. Lifshitz, The Classical Theory of Fields, Butterworth-Heinemann (1975).
  • L. Herrera, J. Ponce de Leon, Isotropic and Anisotropic Charged Spheres Admitting a Oneparameter Group of Conformal Motions, Journal of Mathematical Physics 26 (9) (1985) 2302– 2307.
  • H. Abreu, H. Hernandez, L. Nunez, Sound Speeds, Cracking and the Stability of Self-gravitating Anisotropic Compact Objects, Classical and Quantum Gravity 24 (18) (2007) 4631.

Anisotropic Conformal Model in $f(R, \phi)$ Theory

Year 2022, , 70 - 78, 31.03.2022
https://doi.org/10.53570/jnt.1080665

Abstract

In this study, we examine conformal spherically symmetric spacetime with anisotropic fluid in $f(R,ϕ)$ theory. The exact solutions of field equations are obtained for $f(R,ϕ)=(1+λη^2 ϕ^2 )R$ model. All the quantities for anisotropic fluid are investigated through equation of state constant, $ω$. The models for three different selections of $ω$ are represented for the constructed model. Moreover, string gas is the only condition that anisotropic fluid behaves as an isotropic fluid for the constructed model. Furthermore, the anisotropy parameter and causality conditions are examined. Lastly, the results for the solutions are concluded from the physical and geometrical viewpoint.

References

  • S. Perlmutter, S. Gabi, G. Goldhaber, A. Goobar, D. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. Lee, R. Pain, C. R. Pennypacker, I. A. Small, R. S. E. Ellis, R. G. McMahon, B. J. Boyle, P. S. Bunclark, D. Carter, M. J. Irwin, K. Glazebrook, H. J. M. Newberg, F. A. V, T. Matheson, M. Dopita, W. J. Couch, Measurements* of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z≥0.35, The Astrophysical Journal 483 (2) (1997) 565.
  • S. Perlmutter, G. Aldering, M. Della Valle, S. Deustua, R. S. Ellis, S. Fabbro, A. Fruchter, G. Goldhaber, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, R. A. Knop, C. Lidman, R. G. McMahon, P. Nugent, R. Pain, N. Panagia, C. R. Pennypacker, P. Ruiz-Lapuente, B. Schaefer, N.Walton, Discovery of a Supernova Explosion at Half the Age of the Universe, Nature 391 (6662) (1998) 51–54.
  • S. Perlmutter, M. S. Turner, M. White, Constraining Dark Energy with Type Ia Supernovae and Large-scale Structure, Physical Review Letters 83 (4) (1999) 670.
  • D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. Nolta, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, G. S. Tucker, J. L. Weiland, E. Wollack, E. L. Wright, First-year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations: Determination of Cosmological Parameters, The Astrophysical Journal Supplement Series 148 (1) (2003) 175.
  • C. L. Bennett, M. Bay, M. Halpern, G. Hinshaw, C. Jackson, N. Jarosik, A. Kogut, M. Limon, S. Meyer, L. Page, D. N. Spergel, G. S. Tucker, D. T. Wilkinson, E. Wollack, E. L. Wright, The Microwave Anisotropy Probe* Mission, The Astrophysical Journal 583 (1) (2003) 1.
  • J.-c. Hwang, Cosmological Perturbations in Generalized Gravity Theories: Conformal Transformation, Classical and Quantum Gravity 14 (7) (1997) 1981.
  • J.-O. Gong, J.-c. Hwang, W. I. Park, M. Sasaki, Y.-S. Song, Conformal Invariance of Curvature Perturbation, Journal of Cosmology and Astroparticle Physics 2011 (09) (2011) 023.
  • J.-c. Hwang, Unified Analysis of Cosmological Perturbations in Generalized Gravity, Physical Review D 53 (2) (1996) 762.
  • J.-c. Hwang, H. Noh, Cosmological Perturbations in Generalized Gravity Theories, Physical Review D 54 (2) (1996) 1460.
  • R. Myrzakulov, L. Sebastiani, S. Vagnozzi, Inflation in f(R,ϕ) Theories and Mimetic Gravity Scenario, The European Physical Journal C 75 (9) (2015) 1–11.
  • J. Mathew, J. P. Johnson, S. Shankaranarayanan, Inflation with f(R,ϕ) in Jordan Frame, General Relativity and Gravitation 50 (7) (2018) 1–15.
  • A. Stabile, S. Capozziello, Galaxy Rotation Curves in f(R,ϕ) Gravity, Physical Review D 87 (6) (2013) 064002.
  • M. F. Shamir, A. Malik, Behavior of Anisotropic Compact Stars in f(R,ϕ) Gravity, Communications in Theoretical Physics 71 (5) (2019) 599.
  • S. Cheraghchi, F. Shojai, On the Initial Conditions of Scalar and Tensor Fluctuations in f(R,ϕ) Gravity, The European Physical Journal C 78 (5) (2018) 1–9.
  • M. Zubair, F. Kousar, S. Bahamonde, Static Spherically Symmetric Wormholes in Generalized f(R,ϕ) Gravity, The European Physical Journal Plus 133 (12) (2018) 523.
  • H. Farajollahi, M. Setare, F. Milani, F. Tayebi, Cosmic Dynamics in F(R,ϕ) Gravity, General Relativity and Gravitation 43 (6) (2011) 1657–1669.
  • A. Malik, M. Ahmad, S. Mahmood, Some Dark Energy Cosmological Models in f(R, ϕ) Gravity, New Astronomy 89 (2021) 101631.
  • A. Das, F. Rahaman, B. Guha, S. Ray, Compact Stars in f(R,T) Gravity, The European Physical Journal C 76 (12) (2016) 1–10.
  • S. Maharaj, R. Maartens, M. Maharaj, Conformal Symmetries in Static Spherically Symmetric Spacetimes, International Journal of Theoretical Physics 34 (11) (1995) 2285–2291.
  • R. Maartens, S. Maharaj, Conformal Killing Vectors in Robertson-Walker Spacetimes, Classical and Quantum Gravity 3 (5) (1986) 1005.
  • A. Manjonjo, S. Maharaj, S. Moopanar, Static Models with Conformal Symmetry, Classical and Quantum Gravity 35 (4) (2018) 045015.
  • D. K. Matondo, S. Maharaj, S. Ray, Relativistic Stars with Conformal Symmetry, The European Physical Journal C 78 (6) (2018) 1–13.
  • S. Maurya, S. Maharaj, D. Deb, Generalized Anisotropic Models for Conformal Symmetry, The European Physical Journal C 79 (2) (2019) 1–15.
  • D. Shee, F. Rahaman, B. Guha, S. Ray, Anisotropic Stars with Non-static Conformal Symmetry, Astrophysics and Space Science 361 (5) (2016) 1–10.
  • J.-c. Hwang, Cosmological Perturbations in Generalised Gravity Theories: Formulation, Classical and Quantum Gravity 7 (9) (1990) 1613.
  • G. Lambiase, M. Sakellariadou, A. Stabile, A. Stabile, Astrophysical Constraints on Extended Gravity Models, Journal of Cosmology and Astroparticle Physics 2015 (07) (2015) 003.
  • L. Landau, E. Lifshitz, The Classical Theory of Fields, Butterworth-Heinemann (1975).
  • L. Herrera, J. Ponce de Leon, Isotropic and Anisotropic Charged Spheres Admitting a Oneparameter Group of Conformal Motions, Journal of Mathematical Physics 26 (9) (1985) 2302– 2307.
  • H. Abreu, H. Hernandez, L. Nunez, Sound Speeds, Cracking and the Stability of Self-gravitating Anisotropic Compact Objects, Classical and Quantum Gravity 24 (18) (2007) 4631.
There are 29 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Article
Authors

Doğukan Taşer 0000-0002-8622-6830

Publication Date March 31, 2022
Submission Date February 28, 2022
Published in Issue Year 2022

Cite

APA Taşer, D. (2022). Anisotropic Conformal Model in $f(R, \phi)$ Theory. Journal of New Theory(38), 70-78. https://doi.org/10.53570/jnt.1080665
AMA Taşer D. Anisotropic Conformal Model in $f(R, \phi)$ Theory. JNT. March 2022;(38):70-78. doi:10.53570/jnt.1080665
Chicago Taşer, Doğukan. “Anisotropic Conformal Model in $f(R, \phi)$ Theory”. Journal of New Theory, no. 38 (March 2022): 70-78. https://doi.org/10.53570/jnt.1080665.
EndNote Taşer D (March 1, 2022) Anisotropic Conformal Model in $f(R, \phi)$ Theory. Journal of New Theory 38 70–78.
IEEE D. Taşer, “Anisotropic Conformal Model in $f(R, \phi)$ Theory”, JNT, no. 38, pp. 70–78, March 2022, doi: 10.53570/jnt.1080665.
ISNAD Taşer, Doğukan. “Anisotropic Conformal Model in $f(R, \phi)$ Theory”. Journal of New Theory 38 (March 2022), 70-78. https://doi.org/10.53570/jnt.1080665.
JAMA Taşer D. Anisotropic Conformal Model in $f(R, \phi)$ Theory. JNT. 2022;:70–78.
MLA Taşer, Doğukan. “Anisotropic Conformal Model in $f(R, \phi)$ Theory”. Journal of New Theory, no. 38, 2022, pp. 70-78, doi:10.53570/jnt.1080665.
Vancouver Taşer D. Anisotropic Conformal Model in $f(R, \phi)$ Theory. JNT. 2022(38):70-8.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).