Research Article
BibTex RIS Cite
Year 2023, , 29 - 42, 31.03.2023
https://doi.org/10.53570/jnt.1188215

Abstract

References

  • I. Sabadini, M. Shapiro, F. Sommen, Hypercomplex Analysis, Springer, London, 2009.
  • M. Özdemir, The Roots of a Split Quaternion, Applied Mathematics Letters 22 (2) (2009) 258–263.
  • A. Kobus, J. L. Cieslinski, On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions, Advances in Applied Clifford Algebras 27 (2) (2017) 1369–1386.
  • S. J. Sangwine, N. L. Bihan, Quaternion Polar Representations with a Complex Modulus and Complex Argument Inspired by the Cayley-Dickson Form, Advances in Applied Clifford Algebras 20 (2010) 111-120.
  • M. Fernandez-Guasti, Roots of Elliptic Scator Numbers, Axioms 10 (4) (2021) 321 20 pages.
  • I. Niven, The Roots of a Quaternion, The American Mathematical Monthly 49 (6) (1942) 386–388.
  • M. Fernandez-Guasti, Powers of Elliptic Scator Numbers, Axioms 10 (4) (2021) 250 23 pages.
  • M. Fernandez-Guasti, Associativity in Scator Algebra and the Quantum Wavefunction Collapse, Universal Journal of Mathematics and Applications 1 (2) (2018) 80–88.

Multiplicity of Scator Roots and the Square Roots in $\mathbb{S}^{1+2}$

Year 2023, , 29 - 42, 31.03.2023
https://doi.org/10.53570/jnt.1188215

Abstract

This paper presents the roots of elliptic scator numbers in $\mathbb{S}^{1+n}$, which includes both the fundamental $2\pi$ symmetry and the $\pi$-pair symmetry for $n\geq2$. Here, the scator set $\mathbb{S}^{1+n}$ is a subset of $\mathbb{R}^{1+n}$ with the scator product and the multiplicative representation. These roots are expressed in terms of both additive (rectangular) and multiplicative (polar) variables. Additionally, the paper provides a comprehensive description of square roots in $\mathbb{S}^{1+2}$, which includes a geometrical representation in three-dimensional space that provides a clear visualization of the concept and makes it easier to understand and interpret. Finally, the paper handles whether the aspects should be further investigated.

Supporting Institution

Universidad Autonoma Metropolitana - Iztapalapa

References

  • I. Sabadini, M. Shapiro, F. Sommen, Hypercomplex Analysis, Springer, London, 2009.
  • M. Özdemir, The Roots of a Split Quaternion, Applied Mathematics Letters 22 (2) (2009) 258–263.
  • A. Kobus, J. L. Cieslinski, On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions, Advances in Applied Clifford Algebras 27 (2) (2017) 1369–1386.
  • S. J. Sangwine, N. L. Bihan, Quaternion Polar Representations with a Complex Modulus and Complex Argument Inspired by the Cayley-Dickson Form, Advances in Applied Clifford Algebras 20 (2010) 111-120.
  • M. Fernandez-Guasti, Roots of Elliptic Scator Numbers, Axioms 10 (4) (2021) 321 20 pages.
  • I. Niven, The Roots of a Quaternion, The American Mathematical Monthly 49 (6) (1942) 386–388.
  • M. Fernandez-Guasti, Powers of Elliptic Scator Numbers, Axioms 10 (4) (2021) 250 23 pages.
  • M. Fernandez-Guasti, Associativity in Scator Algebra and the Quantum Wavefunction Collapse, Universal Journal of Mathematics and Applications 1 (2) (2018) 80–88.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Manuel Fernandez-guasti 0000-0002-1839-6002

Publication Date March 31, 2023
Submission Date October 13, 2022
Published in Issue Year 2023

Cite

APA Fernandez-guasti, M. (2023). Multiplicity of Scator Roots and the Square Roots in $\mathbb{S}^{1+2}$. Journal of New Theory(42), 29-42. https://doi.org/10.53570/jnt.1188215
AMA Fernandez-guasti M. Multiplicity of Scator Roots and the Square Roots in $\mathbb{S}^{1+2}$. JNT. March 2023;(42):29-42. doi:10.53570/jnt.1188215
Chicago Fernandez-guasti, Manuel. “Multiplicity of Scator Roots and the Square Roots in $\mathbb{S}^{1+2}$”. Journal of New Theory, no. 42 (March 2023): 29-42. https://doi.org/10.53570/jnt.1188215.
EndNote Fernandez-guasti M (March 1, 2023) Multiplicity of Scator Roots and the Square Roots in $\mathbb{S}^{1+2}$. Journal of New Theory 42 29–42.
IEEE M. Fernandez-guasti, “Multiplicity of Scator Roots and the Square Roots in $\mathbb{S}^{1+2}$”, JNT, no. 42, pp. 29–42, March 2023, doi: 10.53570/jnt.1188215.
ISNAD Fernandez-guasti, Manuel. “Multiplicity of Scator Roots and the Square Roots in $\mathbb{S}^{1+2}$”. Journal of New Theory 42 (March 2023), 29-42. https://doi.org/10.53570/jnt.1188215.
JAMA Fernandez-guasti M. Multiplicity of Scator Roots and the Square Roots in $\mathbb{S}^{1+2}$. JNT. 2023;:29–42.
MLA Fernandez-guasti, Manuel. “Multiplicity of Scator Roots and the Square Roots in $\mathbb{S}^{1+2}$”. Journal of New Theory, no. 42, 2023, pp. 29-42, doi:10.53570/jnt.1188215.
Vancouver Fernandez-guasti M. Multiplicity of Scator Roots and the Square Roots in $\mathbb{S}^{1+2}$. JNT. 2023(42):29-42.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).