Research Article
BibTex RIS Cite
Year 2023, , 1 - 9, 30.09.2023
https://doi.org/10.53570/jnt.1289799

Abstract

References

  • C. C. Chang, Algebraic Analysis of Many-Valued Logics, Transactions of the American Mathematical Society 88 (1958) 467--490.
  • A. Di Nola, G. Georgescu, A. Iorgulescu, Pseudo-BL Algebras: Part I, Multiple Valued Logic 8 (5-6) (2002) 673--716.
  • R. Cignoli, I. M. L. D'Ottaviano, D. Mundici, Algebraic Foundations of Many Valued Reasoning, Kluwer Academic Publication, Dordrecht, 2000.
  • E. Turunen, S. Sessa, Local BL-algebras, Multiple Valued Logic 6 (1-2) (2001) 229--250.
  • P. Hajek, L. Godo, F. Esteva, A Complete Many-Valued Logic with Product-Conjunction, Archive for Mathematical Logic 35 (1996) 191--208.
  • P. Hajek, Mathematics of Fuzzy Logic, Springer Science and Business Media, Dordrecht, 1998.
  • K. H. Kim, On Symmetric Bi-Derivations of BL-Algebras, Annals of Fuzzy Mathematics and Informatics 19 (2) (2020) 189--198.
  • S. Alsatayhi, A. Moussavi, $(\varphi,\psi )$-Derivations of BL-Algebras, Asian-European Journal of Mathematics 11 (01) (2018) 1850016 19 pages.
  • S. Motamed, S. Ehterami, New Types of Derivations in BL-Algebras, New Mathematics and Natural Computation 16 (03) (2020) 627--643.
  • M. A. Öztürk, Permuting Tri-Derivations in Prime and Semi-Prime Rings, East Asian Mathematical Journal 15 (1999) 177--190.
  • D. Yılmaz, B. Davvaz, H. Yazarlı, Permuting Tri-Derivations in MV-Algebras, Malaya Journal of Matematik 11 (02) (2023) 142--150.
  • H. Yazarlı, M. A. Öztürk, Y. B. Jun, Tri-Additive Maps and Permuting Tri-Derivations, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 54 (01) (2005).
  • M. A. Öztürk, H. Yazarlı, K. H. Kim, Permuting Tri-Derivations in Lattices, Quaestiones Mathematicae 32 (3) (2009) 415--425.

BL-Algebras with Permuting Tri-Derivations

Year 2023, , 1 - 9, 30.09.2023
https://doi.org/10.53570/jnt.1289799

Abstract

Basic logic algebras (BL-algebras) were introduced by Hajek. Multi-value algebras (MV-algebras), Gödel algebras, and product algebras are particular cases of BL-algebras. Moreover, BL-algebras are algebraic structures, and their principal examples are the real interval $[0, 1]$ with the structure given by a continuous $t$-norm and abelian $l$-groups. In this article, we consider a type of derivation structure on BL-algebras. We study $(\odot,\vee)$-permuting tri-derivations of BL-algebras and their examples and basic properties. We obtain results regarding the trace of $(\odot,\vee)$-permuting derivations on Gödel BL-algebras. Finally, the article presents that the results herein can be generalized in future research.

References

  • C. C. Chang, Algebraic Analysis of Many-Valued Logics, Transactions of the American Mathematical Society 88 (1958) 467--490.
  • A. Di Nola, G. Georgescu, A. Iorgulescu, Pseudo-BL Algebras: Part I, Multiple Valued Logic 8 (5-6) (2002) 673--716.
  • R. Cignoli, I. M. L. D'Ottaviano, D. Mundici, Algebraic Foundations of Many Valued Reasoning, Kluwer Academic Publication, Dordrecht, 2000.
  • E. Turunen, S. Sessa, Local BL-algebras, Multiple Valued Logic 6 (1-2) (2001) 229--250.
  • P. Hajek, L. Godo, F. Esteva, A Complete Many-Valued Logic with Product-Conjunction, Archive for Mathematical Logic 35 (1996) 191--208.
  • P. Hajek, Mathematics of Fuzzy Logic, Springer Science and Business Media, Dordrecht, 1998.
  • K. H. Kim, On Symmetric Bi-Derivations of BL-Algebras, Annals of Fuzzy Mathematics and Informatics 19 (2) (2020) 189--198.
  • S. Alsatayhi, A. Moussavi, $(\varphi,\psi )$-Derivations of BL-Algebras, Asian-European Journal of Mathematics 11 (01) (2018) 1850016 19 pages.
  • S. Motamed, S. Ehterami, New Types of Derivations in BL-Algebras, New Mathematics and Natural Computation 16 (03) (2020) 627--643.
  • M. A. Öztürk, Permuting Tri-Derivations in Prime and Semi-Prime Rings, East Asian Mathematical Journal 15 (1999) 177--190.
  • D. Yılmaz, B. Davvaz, H. Yazarlı, Permuting Tri-Derivations in MV-Algebras, Malaya Journal of Matematik 11 (02) (2023) 142--150.
  • H. Yazarlı, M. A. Öztürk, Y. B. Jun, Tri-Additive Maps and Permuting Tri-Derivations, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 54 (01) (2005).
  • M. A. Öztürk, H. Yazarlı, K. H. Kim, Permuting Tri-Derivations in Lattices, Quaestiones Mathematicae 32 (3) (2009) 415--425.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Damla Yılmaz 0000-0002-6741-8669

Publication Date September 30, 2023
Submission Date April 29, 2023
Published in Issue Year 2023

Cite

APA Yılmaz, D. (2023). BL-Algebras with Permuting Tri-Derivations. Journal of New Theory(44), 1-9. https://doi.org/10.53570/jnt.1289799
AMA Yılmaz D. BL-Algebras with Permuting Tri-Derivations. JNT. September 2023;(44):1-9. doi:10.53570/jnt.1289799
Chicago Yılmaz, Damla. “BL-Algebras With Permuting Tri-Derivations”. Journal of New Theory, no. 44 (September 2023): 1-9. https://doi.org/10.53570/jnt.1289799.
EndNote Yılmaz D (September 1, 2023) BL-Algebras with Permuting Tri-Derivations. Journal of New Theory 44 1–9.
IEEE D. Yılmaz, “BL-Algebras with Permuting Tri-Derivations”, JNT, no. 44, pp. 1–9, September 2023, doi: 10.53570/jnt.1289799.
ISNAD Yılmaz, Damla. “BL-Algebras With Permuting Tri-Derivations”. Journal of New Theory 44 (September 2023), 1-9. https://doi.org/10.53570/jnt.1289799.
JAMA Yılmaz D. BL-Algebras with Permuting Tri-Derivations. JNT. 2023;:1–9.
MLA Yılmaz, Damla. “BL-Algebras With Permuting Tri-Derivations”. Journal of New Theory, no. 44, 2023, pp. 1-9, doi:10.53570/jnt.1289799.
Vancouver Yılmaz D. BL-Algebras with Permuting Tri-Derivations. JNT. 2023(44):1-9.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).