Research Article
BibTex RIS Cite

A New Form of Smooth Cubic Surfaces with 9 Lines

Year 2023, , 62 - 78, 30.09.2023
https://doi.org/10.53570/jnt.1341754

Abstract

A smooth cubic surface has at most 27 lines, with equality if and only if the underlying field is algebraically closed. Only a few cases are possible regarding the number of lines over fields that are not algebraically closed. The next two cases of interest are smooth cubic surfaces with 15 or 9 lines. The author has recently settled the case of 15 lines. In this paper, we address the case of smooth cubic surfaces with 9 lines. We describe a way to create some cubic surfaces with 9 or more lines based on a set of six field elements. Conditions on the six parameters are given under which the surface has exactly 9, 15, or 27 lines. However, the problem of generating all cubic surfaces with 9 lines remains open.

References

  • A. Cayley, On the Triple Tangent Planes of Surfaces of the Third Order, Cambridge Journal of Mathematics (4) (1849) 118--138
  • L. Schlafli, An Attempt to Determine the Twenty-Seven Lines upon a Surface of the Third Order and to Divide such 35 Surfaces into Species in Reference to the Reality of the Lines upon the Surface, The Quarterly Journal of Mathematics (2) (1858) 55--110.
  • B. Segre, Le rette delle Superficie Cubiche nei Corpi Commutativi, Bollettino dell'Unione Matematica Italiana 3 (4) (1949) 223--228.
  • L. A. Rosati, L'equazione delle 27 Rette della Superficie Cubica Generale in un Corpo Finito, Bollettino dell'Unione Matematica Italiana 3 (12) (1957) 612--626.
  • L. E. Dickson, Projective Classification of Cubic Surfaces Modulo 2, Annals of Mathematics 16 (1915) 139--157.
  • F. Karaoğlu, Non-Singular Cubic Surfaces over $\mathbb{F}_{2^k}$, Turkish Journal of Mathematics 45 (6) (2021) 2492--2510.
  • A. Betten, J. W. P. Hirschfeld, F. Karaoğlu, Classification of Cubic Surfaces with Twenty-Seven Lines over the Finite Field of Order Thirteen, European Journal of Mathematics (4) (2018) 37--50.
  • A. Betten, F. Karaoğlu, Cubic Surfaces over Small Finite Fields, Designs, Codes and Cryptography 87 (4) (2019) 931--953.
  • F. Karaoğlu, A. Betten, The Number of Cubic Surfaces with 27 lines Over a Finite Field, Journal of Algebraic Combinatorics 56 (1) (2022) 43--57.
  • A. Betten, F. Karaoğlu, The Eckardt Point Configuration of Cubic Surfaces Revisited, Designs, Codes and Cryptography 90 (9) (2022) 2159--2180.
  • F. Karaoğlu, Smooth Cubic Surfaces with 15 Lines, Applicable Algebra in Engineering, Communication and Computing 33 (6) (2022) 823--853.
  • T. Shioda, Weierstrass Transformations and Cubib Surfaces, Commentarii Mathematici Universitatis Sancti Pauli 44 (1) (1995) 109--128.
  • I. Polo-Blanco, J. Top, Explicit Real Cubic Surfaces, Canadian Mathematical Bulletin 51 (1) (2008) 125--133.
  • R. A. ElManssour, Y. ElMaazouz, E. Kaya, K. Rose, Lines on p-adic and Real Cubic Surfaces Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg (in press).
  • R. Das, Arithmetic Statistics on Cubic Surfaces, Research in the Mathematical Sciences 7 (3) (2020) Article Number 23 12 pages.
  • A. Betten, The Orbiter Ecosystem for Combinatorial Objects, in: I. Z. Emiris, L. Zhi (Eds.), ISSAC 2020--Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, Kalamata, 2020, pp. 30--37.
  • H. F. Baker. Principles of Geometry: Solid Geometry, Cambridge University Press, Cambridge, 2010.
  • L. A. Rosati, Sul Numero dei Punti di una Superficie Cubica in uno Spazio Lineare Finito, Bollettino dell'Unione 31 Matematica Italiana 3 (11) (1956) 412--418.
  • J. W. P. Hirschfeld, Projective Geometries over Finite Fields, 2nd Edition, Oxford University Press, Oxford, 1998.
  • J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, New York, 1985.
  • M. Reid, Undergraduate Algebraic Geometry, Cambridge University Press, Cambridge, 1988.
  • J. Steiner, Uber die Flachen dritten Grades, Journal Für Die Reine Und Angewandte Mathematik (53) (1857) 133--141.
  • I.V. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, 2012.
  • I. Dolgachev, A. Duncan, Automorphisms of Cubic Surfaces in Positive Characteristic, Izvestiya: Mathematics 83 (3) (2018) 5--82.
Year 2023, , 62 - 78, 30.09.2023
https://doi.org/10.53570/jnt.1341754

Abstract

References

  • A. Cayley, On the Triple Tangent Planes of Surfaces of the Third Order, Cambridge Journal of Mathematics (4) (1849) 118--138
  • L. Schlafli, An Attempt to Determine the Twenty-Seven Lines upon a Surface of the Third Order and to Divide such 35 Surfaces into Species in Reference to the Reality of the Lines upon the Surface, The Quarterly Journal of Mathematics (2) (1858) 55--110.
  • B. Segre, Le rette delle Superficie Cubiche nei Corpi Commutativi, Bollettino dell'Unione Matematica Italiana 3 (4) (1949) 223--228.
  • L. A. Rosati, L'equazione delle 27 Rette della Superficie Cubica Generale in un Corpo Finito, Bollettino dell'Unione Matematica Italiana 3 (12) (1957) 612--626.
  • L. E. Dickson, Projective Classification of Cubic Surfaces Modulo 2, Annals of Mathematics 16 (1915) 139--157.
  • F. Karaoğlu, Non-Singular Cubic Surfaces over $\mathbb{F}_{2^k}$, Turkish Journal of Mathematics 45 (6) (2021) 2492--2510.
  • A. Betten, J. W. P. Hirschfeld, F. Karaoğlu, Classification of Cubic Surfaces with Twenty-Seven Lines over the Finite Field of Order Thirteen, European Journal of Mathematics (4) (2018) 37--50.
  • A. Betten, F. Karaoğlu, Cubic Surfaces over Small Finite Fields, Designs, Codes and Cryptography 87 (4) (2019) 931--953.
  • F. Karaoğlu, A. Betten, The Number of Cubic Surfaces with 27 lines Over a Finite Field, Journal of Algebraic Combinatorics 56 (1) (2022) 43--57.
  • A. Betten, F. Karaoğlu, The Eckardt Point Configuration of Cubic Surfaces Revisited, Designs, Codes and Cryptography 90 (9) (2022) 2159--2180.
  • F. Karaoğlu, Smooth Cubic Surfaces with 15 Lines, Applicable Algebra in Engineering, Communication and Computing 33 (6) (2022) 823--853.
  • T. Shioda, Weierstrass Transformations and Cubib Surfaces, Commentarii Mathematici Universitatis Sancti Pauli 44 (1) (1995) 109--128.
  • I. Polo-Blanco, J. Top, Explicit Real Cubic Surfaces, Canadian Mathematical Bulletin 51 (1) (2008) 125--133.
  • R. A. ElManssour, Y. ElMaazouz, E. Kaya, K. Rose, Lines on p-adic and Real Cubic Surfaces Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg (in press).
  • R. Das, Arithmetic Statistics on Cubic Surfaces, Research in the Mathematical Sciences 7 (3) (2020) Article Number 23 12 pages.
  • A. Betten, The Orbiter Ecosystem for Combinatorial Objects, in: I. Z. Emiris, L. Zhi (Eds.), ISSAC 2020--Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, Kalamata, 2020, pp. 30--37.
  • H. F. Baker. Principles of Geometry: Solid Geometry, Cambridge University Press, Cambridge, 2010.
  • L. A. Rosati, Sul Numero dei Punti di una Superficie Cubica in uno Spazio Lineare Finito, Bollettino dell'Unione 31 Matematica Italiana 3 (11) (1956) 412--418.
  • J. W. P. Hirschfeld, Projective Geometries over Finite Fields, 2nd Edition, Oxford University Press, Oxford, 1998.
  • J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, New York, 1985.
  • M. Reid, Undergraduate Algebraic Geometry, Cambridge University Press, Cambridge, 1988.
  • J. Steiner, Uber die Flachen dritten Grades, Journal Für Die Reine Und Angewandte Mathematik (53) (1857) 133--141.
  • I.V. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, 2012.
  • I. Dolgachev, A. Duncan, Automorphisms of Cubic Surfaces in Positive Characteristic, Izvestiya: Mathematics 83 (3) (2018) 5--82.
There are 24 citations in total.

Details

Primary Language English
Subjects Symbolic Calculation
Journal Section Research Article
Authors

Fatma Karaoğlu 0000-0003-2020-7829

Publication Date September 30, 2023
Submission Date August 11, 2023
Published in Issue Year 2023

Cite

APA Karaoğlu, F. (2023). A New Form of Smooth Cubic Surfaces with 9 Lines. Journal of New Theory(44), 62-78. https://doi.org/10.53570/jnt.1341754
AMA Karaoğlu F. A New Form of Smooth Cubic Surfaces with 9 Lines. JNT. September 2023;(44):62-78. doi:10.53570/jnt.1341754
Chicago Karaoğlu, Fatma. “A New Form of Smooth Cubic Surfaces With 9 Lines”. Journal of New Theory, no. 44 (September 2023): 62-78. https://doi.org/10.53570/jnt.1341754.
EndNote Karaoğlu F (September 1, 2023) A New Form of Smooth Cubic Surfaces with 9 Lines. Journal of New Theory 44 62–78.
IEEE F. Karaoğlu, “A New Form of Smooth Cubic Surfaces with 9 Lines”, JNT, no. 44, pp. 62–78, September 2023, doi: 10.53570/jnt.1341754.
ISNAD Karaoğlu, Fatma. “A New Form of Smooth Cubic Surfaces With 9 Lines”. Journal of New Theory 44 (September 2023), 62-78. https://doi.org/10.53570/jnt.1341754.
JAMA Karaoğlu F. A New Form of Smooth Cubic Surfaces with 9 Lines. JNT. 2023;:62–78.
MLA Karaoğlu, Fatma. “A New Form of Smooth Cubic Surfaces With 9 Lines”. Journal of New Theory, no. 44, 2023, pp. 62-78, doi:10.53570/jnt.1341754.
Vancouver Karaoğlu F. A New Form of Smooth Cubic Surfaces with 9 Lines. JNT. 2023(44):62-78.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).