Research Article
BibTex RIS Cite

Altered Numbers of Fibonacci Number Squared

Year 2023, Issue: 45, 73 - 82, 31.12.2023
https://doi.org/10.53570/jnt.1368751
https://izlik.org/JA72MC26FL

Abstract

We investigate two types of altered Fibonacci numbers obtained by adding or subtracting a specific value $\{a\}$ from the square of the $n^{th}$ Fibonacci numbers $G^{(2)}_{F(n)}(a)$ and $H^{(2)}_{F(n)}(a)$. These numbers are significant as they are related to the consecutive products of the Fibonacci numbers. As a result, we establish consecutive sum-subtraction relations of altered Fibonacci numbers and their Binet-like formulas. Moreover, we explore greatest common divisor (GCD) sequences of r-successive terms of altered Fibonacci numbers represented by $\left\{G^{(2)}_{F(n), r}(a)\right\}$ and $\left\{H^{(2)}_{F(n), r}(a)\right\}$ such that $r\in\{1,2,3\}$ and $a\in\{1,4\}$. The sequences are based on the GCD properties of consecutive terms of the Fibonacci numbers and structured as periodic or Fibonacci sequences.

References

  • T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, New York, 2001.
  • N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (1964), https://oeis.org/, Accessed 20 Sep 2023.
  • T. Koshy, Elementary Number Theory with Applications, 2nd Edition, Academic Press, California, 2007.
  • U. Dudley, B. Tucker, Greatest Common Divisors in Altered Fibonacci Sequences, Fibonacci Quarterly 9 (1971) 89–91.
  • S. Hernandez, F. Luca, Common Factors of Shifted Fibonacci Numbers, Periodica Mathematica Hungarica 47 (2003) 95–110.
  • J. Spilker, The GCD of the Shifted Fibonacci Sequence, in: J. Sander, J. Steuding, R. Steuding (Eds.), From Arithmetic to Zeta-Functions: Number Theory in Memory of Wolfgang Schwarz, Springer, Cham, 2016, pp. 473–483.
  • Chen, K.W, Greatest Common Divisors in Shifted Fibonacci Sequences, Journal of Integer Sequences 14 (11) (2011) 4–7.
  • F. Koken, The GCD Sequences of the Altered Lucas Sequences, Annales Mathematicae Silesianae 34 (2) (2020) 222–240.
  • N. Robbins, Fibonacci and Lucas numbers of the Forms $w^2-1$, $w^3±1$, Fibonacci Quarterly 19 (4) (1981) 369–373.
  • J. H. E. Cohn, Square Fibonacci Numbers, The Fibonacci Quarterly 2 (2) (1964) 109–113.
  • H. London, R. Finkelstein, On Fibonacci and Lucas Numbers Which are Perfect Powers, The Fibonacci Quarterly 7 (5) (1969) 476–481.
  • R. Finkelstein, On Lucas Numbers Which are One More Than a Square, Fibonacci Quarterly 14 (1) (1973) 340–342.
  • H. C. Williams, On Fibonacci Numbers of the Form $k^2+1$, The Fibonacci Quarterly 13 (2) (1975) 213–214.
  • J. C. Lagarias, D. P. Weisser, Fibonacci and Lucas Cubes, The Fibonacci Quarterly 19 (1) (1981) 39–43.
  • D. Marques, The Fibonacci Version of the Brocard–Ramanujan Diophantine Equation, Portugaliae Mathematica 68 (2) (2011) 185–189.
  • L. Szalay, Diophantine Equations with Binary Recurrences Associated to the Brocard–Ramanujan Problem, Portugaliae Mathematica 69 (3) (2012) 213–220.
  • P. Pongsriiam, Fibonacci and Lucas Numbers Associated with Brocard-Ramanujan Equation, Communications of the Korean Mathematical Society 32 (3) (2017) 511–522.
  • Z. Cerin, On Factors of Sums of Consecutive Fibonacci and Lucas Numbers, Annales Mathematicae et Informaticae 41 (2013) 19–25.
  • A. Tekcan, A. Ozkoc, B. Gezer, O. Bizim, Some Relations Involving the Sums of Fibonacci Numbers, Proceedings of the Jangjeon Mathematical Society 11 (1) (2008) 1–12.
  • F. Koken, E. Kankal, Altered Numbers of Lucas Number Squared, Journal of Scientific Reports A 54 (2023) 62–75.

Year 2023, Issue: 45, 73 - 82, 31.12.2023
https://doi.org/10.53570/jnt.1368751
https://izlik.org/JA72MC26FL

Abstract

References

  • T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, New York, 2001.
  • N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (1964), https://oeis.org/, Accessed 20 Sep 2023.
  • T. Koshy, Elementary Number Theory with Applications, 2nd Edition, Academic Press, California, 2007.
  • U. Dudley, B. Tucker, Greatest Common Divisors in Altered Fibonacci Sequences, Fibonacci Quarterly 9 (1971) 89–91.
  • S. Hernandez, F. Luca, Common Factors of Shifted Fibonacci Numbers, Periodica Mathematica Hungarica 47 (2003) 95–110.
  • J. Spilker, The GCD of the Shifted Fibonacci Sequence, in: J. Sander, J. Steuding, R. Steuding (Eds.), From Arithmetic to Zeta-Functions: Number Theory in Memory of Wolfgang Schwarz, Springer, Cham, 2016, pp. 473–483.
  • Chen, K.W, Greatest Common Divisors in Shifted Fibonacci Sequences, Journal of Integer Sequences 14 (11) (2011) 4–7.
  • F. Koken, The GCD Sequences of the Altered Lucas Sequences, Annales Mathematicae Silesianae 34 (2) (2020) 222–240.
  • N. Robbins, Fibonacci and Lucas numbers of the Forms $w^2-1$, $w^3±1$, Fibonacci Quarterly 19 (4) (1981) 369–373.
  • J. H. E. Cohn, Square Fibonacci Numbers, The Fibonacci Quarterly 2 (2) (1964) 109–113.
  • H. London, R. Finkelstein, On Fibonacci and Lucas Numbers Which are Perfect Powers, The Fibonacci Quarterly 7 (5) (1969) 476–481.
  • R. Finkelstein, On Lucas Numbers Which are One More Than a Square, Fibonacci Quarterly 14 (1) (1973) 340–342.
  • H. C. Williams, On Fibonacci Numbers of the Form $k^2+1$, The Fibonacci Quarterly 13 (2) (1975) 213–214.
  • J. C. Lagarias, D. P. Weisser, Fibonacci and Lucas Cubes, The Fibonacci Quarterly 19 (1) (1981) 39–43.
  • D. Marques, The Fibonacci Version of the Brocard–Ramanujan Diophantine Equation, Portugaliae Mathematica 68 (2) (2011) 185–189.
  • L. Szalay, Diophantine Equations with Binary Recurrences Associated to the Brocard–Ramanujan Problem, Portugaliae Mathematica 69 (3) (2012) 213–220.
  • P. Pongsriiam, Fibonacci and Lucas Numbers Associated with Brocard-Ramanujan Equation, Communications of the Korean Mathematical Society 32 (3) (2017) 511–522.
  • Z. Cerin, On Factors of Sums of Consecutive Fibonacci and Lucas Numbers, Annales Mathematicae et Informaticae 41 (2013) 19–25.
  • A. Tekcan, A. Ozkoc, B. Gezer, O. Bizim, Some Relations Involving the Sums of Fibonacci Numbers, Proceedings of the Jangjeon Mathematical Society 11 (1) (2008) 1–12.
  • F. Koken, E. Kankal, Altered Numbers of Lucas Number Squared, Journal of Scientific Reports A 54 (2023) 62–75.
There are 20 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Fikri Köken 0000-0002-8304-9525

Emre Kankal 0000-0002-2707-5323

Submission Date September 29, 2023
Early Pub Date December 30, 2023
Publication Date December 31, 2023
DOI https://doi.org/10.53570/jnt.1368751
IZ https://izlik.org/JA72MC26FL
Published in Issue Year 2023 Issue: 45

Cite

APA Köken, F., & Kankal, E. (2023). Altered Numbers of Fibonacci Number Squared. Journal of New Theory, 45, 73-82. https://doi.org/10.53570/jnt.1368751
AMA 1.Köken F, Kankal E. Altered Numbers of Fibonacci Number Squared. JNT. 2023;(45):73-82. doi:10.53570/jnt.1368751
Chicago Köken, Fikri, and Emre Kankal. 2023. “Altered Numbers of Fibonacci Number Squared”. Journal of New Theory, nos. 45: 73-82. https://doi.org/10.53570/jnt.1368751.
EndNote Köken F, Kankal E (December 1, 2023) Altered Numbers of Fibonacci Number Squared. Journal of New Theory 45 73–82.
IEEE [1]F. Köken and E. Kankal, “Altered Numbers of Fibonacci Number Squared”, JNT, no. 45, pp. 73–82, Dec. 2023, doi: 10.53570/jnt.1368751.
ISNAD Köken, Fikri - Kankal, Emre. “Altered Numbers of Fibonacci Number Squared”. Journal of New Theory. 45 (December 1, 2023): 73-82. https://doi.org/10.53570/jnt.1368751.
JAMA 1.Köken F, Kankal E. Altered Numbers of Fibonacci Number Squared. JNT. 2023;:73–82.
MLA Köken, Fikri, and Emre Kankal. “Altered Numbers of Fibonacci Number Squared”. Journal of New Theory, no. 45, Dec. 2023, pp. 73-82, doi:10.53570/jnt.1368751.
Vancouver 1.Köken F, Kankal E. Altered Numbers of Fibonacci Number Squared. JNT [Internet]. 2023 Dec. 1;(45):73-82. Available from: https://izlik.org/JA72MC26FL


TR Dizin 26024

Electronic Journals Library 13651

                                EBSCO 36309                                     

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).