Research Article
BibTex RIS Cite

Lattice of Subinjective Portfolios of Modules

Year 2024, , 11 - 19, 30.06.2024
https://doi.org/10.53570/jnt.1467235

Abstract

Given a ring $R$, we study its right subinjective profile $\mathfrak{siP}(R)$ to be the collection of subinjectivity domains of its right $R$-modules. We deal with the lattice structure of the class $\mathfrak{siP}(R)$. We show that the poset $(\mathfrak{siP}(R),\subseteq)$ forms a complete lattice, and an indigent $R$-module exists if $\mathfrak{siP}(R)$ is a set. In particular, if $R$ is a generalized uniserial ring with $J^{2}(R)=0$, then the lattice $(\mathfrak{siP}(R),\subseteq,\wedge, \vee)$ is Boolean.

Ethical Statement

The author declares no conflict of interest.

Supporting Institution

The Scientific and Technological Research Council of T\"{u}rkiye (TUBITAK)

Project Number

122F130

References

  • B. Saraç, On rings whose quasi-injective modules are injective or semisimple, Journal of Algebra and Its Applications 21 (12) (2022) Article ID 2350005 23 pages.
  • Y. Durğun, An alternative perspective on flatness of modules, Journal of Algebra and Its Applications 15 (08) (2016) Article ID 1650145 18 pages.
  • J. Trlifaj, Whitehead test modules, Transactions of the American Mathematical Society 348 (4) (1996) 1521–1554.
  • S. Crivei, R. Pop, Projectivity and subprojectivity domains in exact categories, Journal of Algebra and Its Applications (2023) Article ID 2550134 19 pages.
  • C. Holston, S. R. Lopez-Permouth, N. O. Ertaş, Rings whose modules have maximal or minimal projectivity domain, Journal of Pure and Applied Algebra 216 (3) (2012) 480–494.
  • N. O. Ertaş, R. Tribak, Some variations of projectivity, Journal of Algebra and Its Applications 21 (12) (2022) Article ID 2250236 19 pages.
  • Y. Durğun, Subprojectivity domains of pure-projective modules, Journal of Algebra and Its Applications 19 (05) (2020) 2050091 14 pages.
  • A. Harmanci, S. R. Lopez-Permouth, B. Ungor, On the pure-injectivity profile of a ring, Communications in Algebra 43 (11) (2015) 4984–5002.
  • R. Alizade, Y. M. Demirci, B. N. Türkmen, E. Türkmen, On rings with one middle class of injectivity domains, Mathematical Communications 27 (1) (2022) 109–126.
  • S. E. Toksoy, Modules with minimal copure-injectivity domain, Journal of Algebra and Its Applications 18 (11) (2019) Article ID 1950201 14 pages.
  • S. R. Lopez-Permouth, J. Mastromatteo, Y. Tolooei, B. Ungor, Pure-injectivity from a different perspective, Glasgow Mathematical Journal 60 (1) (2018) 135–151.
  • P. Aydoğdu, S. R. Lopez-Permouth, An alternative perspective on injectivity of modules, Journal of Algebra 338 (1) (2011) 207–219.
  • R. Alizade, E. Büyükaşik, N. Er, Rings and modules characterized by opposites of injectivity, Journal of Algebra 409 (2014) 182–198.
  • T. Y. Lam, Lectures on modules and rings, Springer, New York, 1999.
  • R. Wisbauer, Foundations of module and ring theory, Gordon and Breach Science Publishers, Reading, 1991.
  • J. Rotman, An introduction to homological algebra, Academic Press, New York, 1979.
  • A. N. Alahmadi, M. Alkan, S. Lopez-Permouth, Poor modules: The opposite of injectivity, Glasgow Mathematical Journal 52 (A) (2010) 7–17.
  • F. Altinay, E. Büyükaşık, Y. Durğun, On the structure of modules defined by subinjectivity, Journal of Algebra and Its Applications 18 (10) (2019) 1950188 13 pages.
  • C. Holston, S. R. Lopez-Permouth, J. Mastromatteo, J. E. Simental-Rodriguez, An alternative perspective on projectivity of modules, Glasgow Mathematical Journal 57 (1) (2015) 83–99.
  • N. V. Dung, D. V. Huynh, P. F. Smith, R. Wisbauer, Extending modules, Longman Scientific and Technical, Harlow, 1994.
  • G. Calugareanu, Lattice concepts of module theory, Springer Science and Business Media, Dordrecht, 2013.
Year 2024, , 11 - 19, 30.06.2024
https://doi.org/10.53570/jnt.1467235

Abstract

Project Number

122F130

References

  • B. Saraç, On rings whose quasi-injective modules are injective or semisimple, Journal of Algebra and Its Applications 21 (12) (2022) Article ID 2350005 23 pages.
  • Y. Durğun, An alternative perspective on flatness of modules, Journal of Algebra and Its Applications 15 (08) (2016) Article ID 1650145 18 pages.
  • J. Trlifaj, Whitehead test modules, Transactions of the American Mathematical Society 348 (4) (1996) 1521–1554.
  • S. Crivei, R. Pop, Projectivity and subprojectivity domains in exact categories, Journal of Algebra and Its Applications (2023) Article ID 2550134 19 pages.
  • C. Holston, S. R. Lopez-Permouth, N. O. Ertaş, Rings whose modules have maximal or minimal projectivity domain, Journal of Pure and Applied Algebra 216 (3) (2012) 480–494.
  • N. O. Ertaş, R. Tribak, Some variations of projectivity, Journal of Algebra and Its Applications 21 (12) (2022) Article ID 2250236 19 pages.
  • Y. Durğun, Subprojectivity domains of pure-projective modules, Journal of Algebra and Its Applications 19 (05) (2020) 2050091 14 pages.
  • A. Harmanci, S. R. Lopez-Permouth, B. Ungor, On the pure-injectivity profile of a ring, Communications in Algebra 43 (11) (2015) 4984–5002.
  • R. Alizade, Y. M. Demirci, B. N. Türkmen, E. Türkmen, On rings with one middle class of injectivity domains, Mathematical Communications 27 (1) (2022) 109–126.
  • S. E. Toksoy, Modules with minimal copure-injectivity domain, Journal of Algebra and Its Applications 18 (11) (2019) Article ID 1950201 14 pages.
  • S. R. Lopez-Permouth, J. Mastromatteo, Y. Tolooei, B. Ungor, Pure-injectivity from a different perspective, Glasgow Mathematical Journal 60 (1) (2018) 135–151.
  • P. Aydoğdu, S. R. Lopez-Permouth, An alternative perspective on injectivity of modules, Journal of Algebra 338 (1) (2011) 207–219.
  • R. Alizade, E. Büyükaşik, N. Er, Rings and modules characterized by opposites of injectivity, Journal of Algebra 409 (2014) 182–198.
  • T. Y. Lam, Lectures on modules and rings, Springer, New York, 1999.
  • R. Wisbauer, Foundations of module and ring theory, Gordon and Breach Science Publishers, Reading, 1991.
  • J. Rotman, An introduction to homological algebra, Academic Press, New York, 1979.
  • A. N. Alahmadi, M. Alkan, S. Lopez-Permouth, Poor modules: The opposite of injectivity, Glasgow Mathematical Journal 52 (A) (2010) 7–17.
  • F. Altinay, E. Büyükaşık, Y. Durğun, On the structure of modules defined by subinjectivity, Journal of Algebra and Its Applications 18 (10) (2019) 1950188 13 pages.
  • C. Holston, S. R. Lopez-Permouth, J. Mastromatteo, J. E. Simental-Rodriguez, An alternative perspective on projectivity of modules, Glasgow Mathematical Journal 57 (1) (2015) 83–99.
  • N. V. Dung, D. V. Huynh, P. F. Smith, R. Wisbauer, Extending modules, Longman Scientific and Technical, Harlow, 1994.
  • G. Calugareanu, Lattice concepts of module theory, Springer Science and Business Media, Dordrecht, 2013.
There are 21 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory, Mathematical Logic, Set Theory, Lattices and Universal Algebra
Journal Section Research Article
Authors

Yilmaz Durğun 0000-0002-1230-8964

Project Number 122F130
Publication Date June 30, 2024
Submission Date April 9, 2024
Acceptance Date May 27, 2024
Published in Issue Year 2024

Cite

APA Durğun, Y. (2024). Lattice of Subinjective Portfolios of Modules. Journal of New Theory(47), 11-19. https://doi.org/10.53570/jnt.1467235
AMA Durğun Y. Lattice of Subinjective Portfolios of Modules. JNT. June 2024;(47):11-19. doi:10.53570/jnt.1467235
Chicago Durğun, Yilmaz. “Lattice of Subinjective Portfolios of Modules”. Journal of New Theory, no. 47 (June 2024): 11-19. https://doi.org/10.53570/jnt.1467235.
EndNote Durğun Y (June 1, 2024) Lattice of Subinjective Portfolios of Modules. Journal of New Theory 47 11–19.
IEEE Y. Durğun, “Lattice of Subinjective Portfolios of Modules”, JNT, no. 47, pp. 11–19, June 2024, doi: 10.53570/jnt.1467235.
ISNAD Durğun, Yilmaz. “Lattice of Subinjective Portfolios of Modules”. Journal of New Theory 47 (June 2024), 11-19. https://doi.org/10.53570/jnt.1467235.
JAMA Durğun Y. Lattice of Subinjective Portfolios of Modules. JNT. 2024;:11–19.
MLA Durğun, Yilmaz. “Lattice of Subinjective Portfolios of Modules”. Journal of New Theory, no. 47, 2024, pp. 11-19, doi:10.53570/jnt.1467235.
Vancouver Durğun Y. Lattice of Subinjective Portfolios of Modules. JNT. 2024(47):11-9.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).