Research Article
BibTex RIS Cite

Mestre's Finite Field Method for Searching Elliptic Curves with High Ranks

Year 2024, , 20 - 27, 30.06.2024
https://doi.org/10.53570/jnt.1467401

Abstract

The theory of elliptic curves is one of the popular topics of recent times with its unsolved problems and interesting conjectures. In 1922, Mordell proved that the group of $\mathbb{Q}$-rational points on an elliptic curve is finitely generated. However, the rank of this group, signifying the number of independent generators, can be arbitrarily high for certain curves, a fact yet to be definitively proven. This study leverages the computer algebra system Magma to investigate curves with potentially high ranks using a technique developed by Mestre.

References

  • D. Penney, C. Pomerance, A search for elliptic curves with large rank, Mathematics of Computation 28 (127) (1974) 851–853.
  • D. Penney, C. Pomerance, Three elliptic curves with rank at least seven, Mathematics of Computation 29 (131) (1975) 965–967.
  • F. Grunewald, R. Zimmert, Uber einige rationale elliptische Kurven mit treiem Rang ≥ 8, Journal für die Reine und Angewandte Mathematik 1977 (296) (1977) 100–107.
  • A. Brumer, K. Kramer, The rank of elliptic curves, Duke Mathematical Journal 44 (1977) 715– 743.
  • J.-F. Mestre, Construction d’une courbe elliptique de rang ≥ 12, Comptes Rendus de l’Academie des Sciences Paris 295 (1982) 643–644.
  • J.-F. Mestre, Courbes elliptiques et formules explicites, Seminaire de Theorie des Nombres de Grenoble 10 (1982) 1–10.
  • J.-F. Mestre, Courbe elliptiques de rang ≥ 11 sur Q(t), Comptes Rendus de l Academie des Sciences 313 (1991) 139–142.
  • J.-F. Mestre, Courbe elliptiques de rang ≥ 12 sur Q(t), Comptes Rendus de l Academie des Sciences 313 (1991) 171–174.
  • J.-F. Mestre, Un exemple de courbe elliptique sur Q de rang ≥ 15, Comptes Rendus de l Academie des Sciences Paris Serie I Mathematics 314 (1992) 453–455.
  • K. Nagao, Examples of elliptic curves over Q with rank ≥ 17, Proceedings of the Japan Academy Serie A Mathematical Sciences 68 (1992) 287–289.
  • K. Nagao, An example of elliptic curve over Q with rank ≥ 20, Proceedings of the Japan Academy Serie A Mathematical Sciences 69 (1993) 291–293.
  • K. Nagao, T. Kouya, An example of elliptic curve over Q with rank ≥ 21, Proceedings of the Japan Academy Serie A Mathematical Sciences 70 (1994) 104–105.
  • S. Fermigier, Une courbe elliptique definie sur Q de rang ≥ 22, Acta Arithmetica 82 (4) (1997) 359–363.
  • A. Dujella, History of elliptic curves rank records (nd), https://web.math.pmf.unizg.hr/ duje/tors/rankhist.html, Accessed 8 April 2024.
  • S.-W. Kim, Searching the ranks of elliptic curves y2 = x3 − px, International Journal of Algebra 12 (8) (2018) 311–318.
  • S.-W. Kim, Ranks in elliptic curves of the forms y2 = x3 + Ax2 + Bx, International Journal of Algebra 12 (8) (2018) 311–318.
  • S.-W. Kim, Ranks in elliptic curves of the forms y2 = x3 ∓Ax, International Journal of Contemporary Mathematical Sciences 18 (1) (2023) 19–31.
  • S.-W. Kim, Ranks in elliptic curves y2 = x3 − 37px and y2 = x3 − 61px and y2 = x3 − 67px and y2 = x3 − 947px, International Journal of Algebra 17 (3) (2023) 121–142.
  • R. Mina, J. Bacani, Elliptic curves of type y2 = x3 − 3pqx having ranks zero and one, Malaysian Journal of Mathematical Sciences 17 (1) (2023) 67–76.
  • F. Khoshnam, D. Moody, High rank elliptic curves with torsion Z/4Z induced by Kihara’s elliptic curves, Integers: The Electronic Journal of Combinatorial Number Theory 16 (8) (2016) A70 12 pages.
  • G. Celik, G. Soydan, Elliptic curves containing sequences of consecutive cubes, Rocky Mountain Journal of Mathematics 47 (7) (2018) 2163–2174.
  • G. Celik, M. Sadek, G. Soydan, Rational sequences on different models of elliptic curves, Glasnik Matematicki 54 (74) (2019) 53–64.
  • A. Dujella, M. Kazalicki, J. C. Peral, Elliptic curves with torsion groups Z/8Zand Z/2Z×Z/6Z, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales Serie A Matematicas 115 (4) (2021) 169 24 pages.
  • A. Dujella, M. Mıkıc, Rank zero elliptic curves induces by rational diophantine triples, Rad Hrvatske Akademije Znanosti i Umjetnosti Matematicke Znanosti 24 (2020) 29–37.
  • A. Dujella, G. Soydan, On elliptic curves induced by rational Diophantine quadruples, Proceedings of the Japan Academy Mathematical Sciences, Series A; Ueno Park 98 (1) (2022) 1–6.
  • L. Halbeisen, N. Hungerbühler, Heron triangles and their elliptic curves, Journal of Number Theory 213 (2020) 232–253.
  • L. Halbeisen, N. Hungerbühler, A. Zargar, A family of congruent number elliptic curves of rank three, Quaestiones Mathematicae 46 (6) (2023) 1131–1137.
  • N. Garcia-Fritz, H. Pasten, Elliptic curves with long arithmetic progressions have large rank, International Mathematics Research Notices 2021 (10) (2021) 7394–7432.
  • A. Dujella, J. Peral, An elliptic curve over Q(u) with torsion Z/4Z and rank 6, Rad Hrvatske Akademije Znanosti i Umjetnosti Matematicke Znanosti 28 (2024) 185–192.
  • L. Beneish, K. Debanjana, R. Anwesh, Rank jumps and growth of Shafarevich-Tate Groups for elliptic curves in Z/pZ extensions, Journal of the Australian Mathematical Society 116 (2024) 1–38.
  • P. J. Cho, K. Jeong, On the distribution of analytic ranks of elliptic curves, Mathematische Zeitschrift 305 (3) (2023) 42 20 pages.
  • A. Dujella, J. Peral, Construction of high rank elliptic curves, The Journal of Geometric Analysis 31 (7) (2021) 6698–6724.
  • N. Elkies, Z. Klagsbrun, New rank records for elliptic curves having rational torsion, in: S. Galbraith (Ed.), Ants XIV: Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Berkeley, 2020, pp. 233–250.
  • M. Kazalicki, D. Vlah, Ranks of elliptic curves and deep neural networks, Research in Number Theory 9 (3) (2023) 53 20 pages.
  • M. Schütt, T. Shioda, Mordell–Weil Lattices, Springer, Singapore, 2019.
  • J. H. Silverman, J. T. Tate, Rational Points on Elliptic Curves, 2nd Edition, Springer International Publishing, Switzerland, 2009.
  • B. Mazur, Modular curves and the Eisenstein ideal, Publications Mathematiques de l IHES 47 (1977) 133–186.
  • B. Mazur, D. Goldfeld, Rational isogenies of prime degree, Inventiones Mathematicae 44 (2) (1978) 129–162.
  • G. Campell, Finding elliptic curves and families of elliptic curves over Q of large rank, Doctoral Dissertation The State University of New Jersey (1999) New Brunswick.
  • A. Lozano-Robledo, Elliptic curves, modular forms, and their L-functions, 1st Edition, American Mathematical Society, United States of America, 2011.
  • B. Bırch, H. Swinnerton-Dyer, Notes on elliptic curves. I., Journal für die reine und angewandte Mathematik 212 (1963) 7–25.
  • K. Rubin, A. Silverberg, Ranks of elliptic curves, Bulletin of the American Mathematical Society 39 (2002) 455–474.
Year 2024, , 20 - 27, 30.06.2024
https://doi.org/10.53570/jnt.1467401

Abstract

References

  • D. Penney, C. Pomerance, A search for elliptic curves with large rank, Mathematics of Computation 28 (127) (1974) 851–853.
  • D. Penney, C. Pomerance, Three elliptic curves with rank at least seven, Mathematics of Computation 29 (131) (1975) 965–967.
  • F. Grunewald, R. Zimmert, Uber einige rationale elliptische Kurven mit treiem Rang ≥ 8, Journal für die Reine und Angewandte Mathematik 1977 (296) (1977) 100–107.
  • A. Brumer, K. Kramer, The rank of elliptic curves, Duke Mathematical Journal 44 (1977) 715– 743.
  • J.-F. Mestre, Construction d’une courbe elliptique de rang ≥ 12, Comptes Rendus de l’Academie des Sciences Paris 295 (1982) 643–644.
  • J.-F. Mestre, Courbes elliptiques et formules explicites, Seminaire de Theorie des Nombres de Grenoble 10 (1982) 1–10.
  • J.-F. Mestre, Courbe elliptiques de rang ≥ 11 sur Q(t), Comptes Rendus de l Academie des Sciences 313 (1991) 139–142.
  • J.-F. Mestre, Courbe elliptiques de rang ≥ 12 sur Q(t), Comptes Rendus de l Academie des Sciences 313 (1991) 171–174.
  • J.-F. Mestre, Un exemple de courbe elliptique sur Q de rang ≥ 15, Comptes Rendus de l Academie des Sciences Paris Serie I Mathematics 314 (1992) 453–455.
  • K. Nagao, Examples of elliptic curves over Q with rank ≥ 17, Proceedings of the Japan Academy Serie A Mathematical Sciences 68 (1992) 287–289.
  • K. Nagao, An example of elliptic curve over Q with rank ≥ 20, Proceedings of the Japan Academy Serie A Mathematical Sciences 69 (1993) 291–293.
  • K. Nagao, T. Kouya, An example of elliptic curve over Q with rank ≥ 21, Proceedings of the Japan Academy Serie A Mathematical Sciences 70 (1994) 104–105.
  • S. Fermigier, Une courbe elliptique definie sur Q de rang ≥ 22, Acta Arithmetica 82 (4) (1997) 359–363.
  • A. Dujella, History of elliptic curves rank records (nd), https://web.math.pmf.unizg.hr/ duje/tors/rankhist.html, Accessed 8 April 2024.
  • S.-W. Kim, Searching the ranks of elliptic curves y2 = x3 − px, International Journal of Algebra 12 (8) (2018) 311–318.
  • S.-W. Kim, Ranks in elliptic curves of the forms y2 = x3 + Ax2 + Bx, International Journal of Algebra 12 (8) (2018) 311–318.
  • S.-W. Kim, Ranks in elliptic curves of the forms y2 = x3 ∓Ax, International Journal of Contemporary Mathematical Sciences 18 (1) (2023) 19–31.
  • S.-W. Kim, Ranks in elliptic curves y2 = x3 − 37px and y2 = x3 − 61px and y2 = x3 − 67px and y2 = x3 − 947px, International Journal of Algebra 17 (3) (2023) 121–142.
  • R. Mina, J. Bacani, Elliptic curves of type y2 = x3 − 3pqx having ranks zero and one, Malaysian Journal of Mathematical Sciences 17 (1) (2023) 67–76.
  • F. Khoshnam, D. Moody, High rank elliptic curves with torsion Z/4Z induced by Kihara’s elliptic curves, Integers: The Electronic Journal of Combinatorial Number Theory 16 (8) (2016) A70 12 pages.
  • G. Celik, G. Soydan, Elliptic curves containing sequences of consecutive cubes, Rocky Mountain Journal of Mathematics 47 (7) (2018) 2163–2174.
  • G. Celik, M. Sadek, G. Soydan, Rational sequences on different models of elliptic curves, Glasnik Matematicki 54 (74) (2019) 53–64.
  • A. Dujella, M. Kazalicki, J. C. Peral, Elliptic curves with torsion groups Z/8Zand Z/2Z×Z/6Z, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales Serie A Matematicas 115 (4) (2021) 169 24 pages.
  • A. Dujella, M. Mıkıc, Rank zero elliptic curves induces by rational diophantine triples, Rad Hrvatske Akademije Znanosti i Umjetnosti Matematicke Znanosti 24 (2020) 29–37.
  • A. Dujella, G. Soydan, On elliptic curves induced by rational Diophantine quadruples, Proceedings of the Japan Academy Mathematical Sciences, Series A; Ueno Park 98 (1) (2022) 1–6.
  • L. Halbeisen, N. Hungerbühler, Heron triangles and their elliptic curves, Journal of Number Theory 213 (2020) 232–253.
  • L. Halbeisen, N. Hungerbühler, A. Zargar, A family of congruent number elliptic curves of rank three, Quaestiones Mathematicae 46 (6) (2023) 1131–1137.
  • N. Garcia-Fritz, H. Pasten, Elliptic curves with long arithmetic progressions have large rank, International Mathematics Research Notices 2021 (10) (2021) 7394–7432.
  • A. Dujella, J. Peral, An elliptic curve over Q(u) with torsion Z/4Z and rank 6, Rad Hrvatske Akademije Znanosti i Umjetnosti Matematicke Znanosti 28 (2024) 185–192.
  • L. Beneish, K. Debanjana, R. Anwesh, Rank jumps and growth of Shafarevich-Tate Groups for elliptic curves in Z/pZ extensions, Journal of the Australian Mathematical Society 116 (2024) 1–38.
  • P. J. Cho, K. Jeong, On the distribution of analytic ranks of elliptic curves, Mathematische Zeitschrift 305 (3) (2023) 42 20 pages.
  • A. Dujella, J. Peral, Construction of high rank elliptic curves, The Journal of Geometric Analysis 31 (7) (2021) 6698–6724.
  • N. Elkies, Z. Klagsbrun, New rank records for elliptic curves having rational torsion, in: S. Galbraith (Ed.), Ants XIV: Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Berkeley, 2020, pp. 233–250.
  • M. Kazalicki, D. Vlah, Ranks of elliptic curves and deep neural networks, Research in Number Theory 9 (3) (2023) 53 20 pages.
  • M. Schütt, T. Shioda, Mordell–Weil Lattices, Springer, Singapore, 2019.
  • J. H. Silverman, J. T. Tate, Rational Points on Elliptic Curves, 2nd Edition, Springer International Publishing, Switzerland, 2009.
  • B. Mazur, Modular curves and the Eisenstein ideal, Publications Mathematiques de l IHES 47 (1977) 133–186.
  • B. Mazur, D. Goldfeld, Rational isogenies of prime degree, Inventiones Mathematicae 44 (2) (1978) 129–162.
  • G. Campell, Finding elliptic curves and families of elliptic curves over Q of large rank, Doctoral Dissertation The State University of New Jersey (1999) New Brunswick.
  • A. Lozano-Robledo, Elliptic curves, modular forms, and their L-functions, 1st Edition, American Mathematical Society, United States of America, 2011.
  • B. Bırch, H. Swinnerton-Dyer, Notes on elliptic curves. I., Journal für die reine und angewandte Mathematik 212 (1963) 7–25.
  • K. Rubin, A. Silverberg, Ranks of elliptic curves, Bulletin of the American Mathematical Society 39 (2002) 455–474.
There are 42 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Şeyda Dalkılıç 0000-0002-3858-8351

Ercan Altınışık 0000-0002-0476-9429

Publication Date June 30, 2024
Submission Date April 10, 2024
Acceptance Date May 23, 2024
Published in Issue Year 2024

Cite

APA Dalkılıç, Ş., & Altınışık, E. (2024). Mestre’s Finite Field Method for Searching Elliptic Curves with High Ranks. Journal of New Theory(47), 20-27. https://doi.org/10.53570/jnt.1467401
AMA Dalkılıç Ş, Altınışık E. Mestre’s Finite Field Method for Searching Elliptic Curves with High Ranks. JNT. June 2024;(47):20-27. doi:10.53570/jnt.1467401
Chicago Dalkılıç, Şeyda, and Ercan Altınışık. “Mestre’s Finite Field Method for Searching Elliptic Curves With High Ranks”. Journal of New Theory, no. 47 (June 2024): 20-27. https://doi.org/10.53570/jnt.1467401.
EndNote Dalkılıç Ş, Altınışık E (June 1, 2024) Mestre’s Finite Field Method for Searching Elliptic Curves with High Ranks. Journal of New Theory 47 20–27.
IEEE Ş. Dalkılıç and E. Altınışık, “Mestre’s Finite Field Method for Searching Elliptic Curves with High Ranks”, JNT, no. 47, pp. 20–27, June 2024, doi: 10.53570/jnt.1467401.
ISNAD Dalkılıç, Şeyda - Altınışık, Ercan. “Mestre’s Finite Field Method for Searching Elliptic Curves With High Ranks”. Journal of New Theory 47 (June 2024), 20-27. https://doi.org/10.53570/jnt.1467401.
JAMA Dalkılıç Ş, Altınışık E. Mestre’s Finite Field Method for Searching Elliptic Curves with High Ranks. JNT. 2024;:20–27.
MLA Dalkılıç, Şeyda and Ercan Altınışık. “Mestre’s Finite Field Method for Searching Elliptic Curves With High Ranks”. Journal of New Theory, no. 47, 2024, pp. 20-27, doi:10.53570/jnt.1467401.
Vancouver Dalkılıç Ş, Altınışık E. Mestre’s Finite Field Method for Searching Elliptic Curves with High Ranks. JNT. 2024(47):20-7.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).