Research Article
BibTex RIS Cite
Year 2024, , 72 - 84, 30.06.2024
https://doi.org/10.53570/jnt.1479551

Abstract

References

  • T. N. Shorey, R. Tijdeman, Exponential diophantine equations, Cambridge University Press, Cambridge, 1986.
  • W. Sierpinski, On the equation $3^x +4^y =5^z$, Wiadomości Matematyczne 1 (2) (1956) 194-195.
  • L. Jesmanowicz, Several remarks on pythagorean numbers, Wiadomości Matematyczne 1 (2) (1955) 196-202.
  • N. Terai, The Diophantine equation $a^x+b^y=c^z$ and $abc \neq 0$, Proceedings of the Japan Academy Series A Mathematical Sciences 70 (1994) 22-26.
  • N. Terai, T. Hibino, On the exponential Diophantine equation, International Journal of Algebra 6 (23) (2012) 1135-1146.
  • T. Miyazaki, N. Terai, On the exponential Diophantine equation, Bulletin of the Australian Mathematical Society 90 (1) (2014) 9-19.
  • N. Terai, T. Hibino, On the exponential Diophantine equation $(12m^2+ 1)^x+(13m^2- 1)^y=(5m)^z$, International Journal of Algebra 9 (6) (2015) 261-272.
  • R. Fu, H. Yang, On the exponential Diophantine equation, Periodica Mathematica Hungarica, 75 (2) (2017) 143-149.
  • X. Pan, A note on the exponential Diophantine equation $(am^2+1)^x+(bm^2-1)^y =(cm)^z$ in colloquium mathematicum, Instytut Matematyczny Polskiej Akademii Nauk 149 (2017) 265-273.
  • M. Alan, On the exponential Diophantine equation $(18m^2+1)^x+(7m^2−1)^y= (5m)^z$, Turkish Journal of Mathematics 42 (4) (2018) 1990-1999.
  • E. Kizildere, T. Miyazaki, G. Soydan, On the Diophantine equation $((c +1)m^2+ 1)^x+(cm^2-1)^y= (am)^z$, Turkish Journal of Mathematics 42 (5) (2018) 2690-2698.
  • N-J. Deng, D-Y. Wu, P-Z. Yuan, The exponential Diophantine equation $(3am^2-1)^x+(a(a-3)m^2+1)^y=(am)^z$, Turkish Journal of Mathematics 43 (5) (2019) 2561-2567.
  • N. Terai, On the exponential Diophantine equation, Annales Mathematicae et Informaticae 52 (2020) 243-253.
  • E. Kızıldere, G. Soydan, On the exponential Diophantine equation $(5pn^2−1)^x+p(p−5)n^2+1)^y=(pn)^z$, Honam Mathematical Journal 42 (2020) 139-150.
  • N. Terai, Y. Shinsho, On the exponential Diophantine equation $(3m^2 +1)^x +(qm^2-1)^y = (rm)^z$, SUT Journal of Mathematics 56 (2020) 147-158.
  • N. Terai, Y. Shinsho, On the exponential Diophantine equation $(4m^2 +1)^x +(45m^2-1)^y = (7m)^z$, International Journal of Algebra 15 (4) (2021) 233-241.
  • M. Alan, R-G. Biratlı, On the exponential Diophantine equation $(6m^2 +1)^x+(3m^2 −1)^y = (3m)^z$, Fundamental Journal of Mathematics and Applications 5 (3) (2022) 174-180.
  • J. Y. He, J. G. Luo, S. L. Fei, On the exponential Diophantine equation $(a(a-l)m^2+1)^x+(alm^2−1)^y=(am)^z$, Aims Mathematics 7 (4) (2022) 7187-7198.
  • E. Hasanalizade, A note on the exponential Diophantine equation $(44m² + 1)^x+ (5m² - 1)^ y= (7m)^z$, Integers: Electronic Journal of Combinatorial Number Theory 23 (1) (2023) 10 pages.
  • M. Laurent , Linear forms in two logarithms and interpolation determinants II, Acta Arithmetica 133 (2008) 325-348.
  • Y. Bugeaud, Linear forms in p-adic logarithms and the Diophantine equation $(x^n-1)/(x-1) = y^q$, Mathematical Proceedings of the Cambridge Philosophical Society 127 (1999) 373-381.
  • K. Zsigmondy, Zur theorie der potenzreste, Monatshefte für Mathematik 3 (1892) 265-284.
  • M. Alan, On the exponential Diophantine equation $(18m^2 + 1)^x + (7m^2 − 1)^y = (5m)^z$, Turkish Journal of Mathematics 42 (4) (2018) 1990-1999.
  • A-Y. Khinchin, Continued fractions, University of Chicago Press, Chicago, 1964.

On the Diophantine Equation $\left(9d^2 + 1\right)^x + \left(16d^2 - 1\right)^y = (5d)^z$ Regarding Terai's Conjecture

Year 2024, , 72 - 84, 30.06.2024
https://doi.org/10.53570/jnt.1479551

Abstract

This study proves that the Diophantine equation $\left(9d^2+1\right)^x+\left(16d^2-1\right)^y=(5d)^z$ has a unique positive integer solution $(x,y,z)=(1,1,2)$, for all $d>1$. The proof employs elementary number theory techniques, including linear forms in two logarithms and Zsigmondy's Primitive Divisor Theorem, specifically when $d$ is not divisible by $5$. In cases where $d$ is divisible by $5$, an alternative method utilizing linear forms in p-adic logarithms is applied.

References

  • T. N. Shorey, R. Tijdeman, Exponential diophantine equations, Cambridge University Press, Cambridge, 1986.
  • W. Sierpinski, On the equation $3^x +4^y =5^z$, Wiadomości Matematyczne 1 (2) (1956) 194-195.
  • L. Jesmanowicz, Several remarks on pythagorean numbers, Wiadomości Matematyczne 1 (2) (1955) 196-202.
  • N. Terai, The Diophantine equation $a^x+b^y=c^z$ and $abc \neq 0$, Proceedings of the Japan Academy Series A Mathematical Sciences 70 (1994) 22-26.
  • N. Terai, T. Hibino, On the exponential Diophantine equation, International Journal of Algebra 6 (23) (2012) 1135-1146.
  • T. Miyazaki, N. Terai, On the exponential Diophantine equation, Bulletin of the Australian Mathematical Society 90 (1) (2014) 9-19.
  • N. Terai, T. Hibino, On the exponential Diophantine equation $(12m^2+ 1)^x+(13m^2- 1)^y=(5m)^z$, International Journal of Algebra 9 (6) (2015) 261-272.
  • R. Fu, H. Yang, On the exponential Diophantine equation, Periodica Mathematica Hungarica, 75 (2) (2017) 143-149.
  • X. Pan, A note on the exponential Diophantine equation $(am^2+1)^x+(bm^2-1)^y =(cm)^z$ in colloquium mathematicum, Instytut Matematyczny Polskiej Akademii Nauk 149 (2017) 265-273.
  • M. Alan, On the exponential Diophantine equation $(18m^2+1)^x+(7m^2−1)^y= (5m)^z$, Turkish Journal of Mathematics 42 (4) (2018) 1990-1999.
  • E. Kizildere, T. Miyazaki, G. Soydan, On the Diophantine equation $((c +1)m^2+ 1)^x+(cm^2-1)^y= (am)^z$, Turkish Journal of Mathematics 42 (5) (2018) 2690-2698.
  • N-J. Deng, D-Y. Wu, P-Z. Yuan, The exponential Diophantine equation $(3am^2-1)^x+(a(a-3)m^2+1)^y=(am)^z$, Turkish Journal of Mathematics 43 (5) (2019) 2561-2567.
  • N. Terai, On the exponential Diophantine equation, Annales Mathematicae et Informaticae 52 (2020) 243-253.
  • E. Kızıldere, G. Soydan, On the exponential Diophantine equation $(5pn^2−1)^x+p(p−5)n^2+1)^y=(pn)^z$, Honam Mathematical Journal 42 (2020) 139-150.
  • N. Terai, Y. Shinsho, On the exponential Diophantine equation $(3m^2 +1)^x +(qm^2-1)^y = (rm)^z$, SUT Journal of Mathematics 56 (2020) 147-158.
  • N. Terai, Y. Shinsho, On the exponential Diophantine equation $(4m^2 +1)^x +(45m^2-1)^y = (7m)^z$, International Journal of Algebra 15 (4) (2021) 233-241.
  • M. Alan, R-G. Biratlı, On the exponential Diophantine equation $(6m^2 +1)^x+(3m^2 −1)^y = (3m)^z$, Fundamental Journal of Mathematics and Applications 5 (3) (2022) 174-180.
  • J. Y. He, J. G. Luo, S. L. Fei, On the exponential Diophantine equation $(a(a-l)m^2+1)^x+(alm^2−1)^y=(am)^z$, Aims Mathematics 7 (4) (2022) 7187-7198.
  • E. Hasanalizade, A note on the exponential Diophantine equation $(44m² + 1)^x+ (5m² - 1)^ y= (7m)^z$, Integers: Electronic Journal of Combinatorial Number Theory 23 (1) (2023) 10 pages.
  • M. Laurent , Linear forms in two logarithms and interpolation determinants II, Acta Arithmetica 133 (2008) 325-348.
  • Y. Bugeaud, Linear forms in p-adic logarithms and the Diophantine equation $(x^n-1)/(x-1) = y^q$, Mathematical Proceedings of the Cambridge Philosophical Society 127 (1999) 373-381.
  • K. Zsigmondy, Zur theorie der potenzreste, Monatshefte für Mathematik 3 (1892) 265-284.
  • M. Alan, On the exponential Diophantine equation $(18m^2 + 1)^x + (7m^2 − 1)^y = (5m)^z$, Turkish Journal of Mathematics 42 (4) (2018) 1990-1999.
  • A-Y. Khinchin, Continued fractions, University of Chicago Press, Chicago, 1964.
There are 24 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Tuba Çokoksen 0009-0004-3164-1211

Murat Alan 0000-0003-2031-2725

Publication Date June 30, 2024
Submission Date May 6, 2024
Acceptance Date June 26, 2024
Published in Issue Year 2024

Cite

APA Çokoksen, T., & Alan, M. (2024). On the Diophantine Equation $\left(9d^2 + 1\right)^x + \left(16d^2 - 1\right)^y = (5d)^z$ Regarding Terai’s Conjecture. Journal of New Theory(47), 72-84. https://doi.org/10.53570/jnt.1479551
AMA Çokoksen T, Alan M. On the Diophantine Equation $\left(9d^2 + 1\right)^x + \left(16d^2 - 1\right)^y = (5d)^z$ Regarding Terai’s Conjecture. JNT. June 2024;(47):72-84. doi:10.53570/jnt.1479551
Chicago Çokoksen, Tuba, and Murat Alan. “On the Diophantine Equation $\left(9d^2 + 1\right)^x + \left(16d^2 - 1\right)^y = (5d)^z$ Regarding Terai’s Conjecture”. Journal of New Theory, no. 47 (June 2024): 72-84. https://doi.org/10.53570/jnt.1479551.
EndNote Çokoksen T, Alan M (June 1, 2024) On the Diophantine Equation $\left(9d^2 + 1\right)^x + \left(16d^2 - 1\right)^y = (5d)^z$ Regarding Terai’s Conjecture. Journal of New Theory 47 72–84.
IEEE T. Çokoksen and M. Alan, “On the Diophantine Equation $\left(9d^2 + 1\right)^x + \left(16d^2 - 1\right)^y = (5d)^z$ Regarding Terai’s Conjecture”, JNT, no. 47, pp. 72–84, June 2024, doi: 10.53570/jnt.1479551.
ISNAD Çokoksen, Tuba - Alan, Murat. “On the Diophantine Equation $\left(9d^2 + 1\right)^x + \left(16d^2 - 1\right)^y = (5d)^z$ Regarding Terai’s Conjecture”. Journal of New Theory 47 (June 2024), 72-84. https://doi.org/10.53570/jnt.1479551.
JAMA Çokoksen T, Alan M. On the Diophantine Equation $\left(9d^2 + 1\right)^x + \left(16d^2 - 1\right)^y = (5d)^z$ Regarding Terai’s Conjecture. JNT. 2024;:72–84.
MLA Çokoksen, Tuba and Murat Alan. “On the Diophantine Equation $\left(9d^2 + 1\right)^x + \left(16d^2 - 1\right)^y = (5d)^z$ Regarding Terai’s Conjecture”. Journal of New Theory, no. 47, 2024, pp. 72-84, doi:10.53570/jnt.1479551.
Vancouver Çokoksen T, Alan M. On the Diophantine Equation $\left(9d^2 + 1\right)^x + \left(16d^2 - 1\right)^y = (5d)^z$ Regarding Terai’s Conjecture. JNT. 2024(47):72-84.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).