Research Article
BibTex RIS Cite

Year 2025, Issue: 51, 92 - 106, 30.06.2025
https://doi.org/10.53570/jnt.1702949

Abstract

References

  • M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation & Applications 1 (2) (2015) 73-85.
  • A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science 20 (2) (2016) 763-769.
  • F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas, Fractional calculus and continuous-time finance II: The waiting-time distribution, Physica A: Statistical Mechanics and its Applications 287 (3-4) (2000) 468-481.
  • N. Laskin, Fractional market dynamics, Physica A: Statistical Mechanics and its Applications 287 (3-4) (2000) 482-492.
  • A. Ercan, Fractional kinetic models for drying using a semi-empirical method in the framework of different types of kernels, Symmetry 17 (4) (2025) 483.
  • A. Ercan, Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels, AIMS Mathematics 7 (7) (2022) 13325-13343.
  • M. Naber, Time fractional Schrödinger equation, Journal of Mathematical Physics 45 (8) (2004) 3339-3352.
  • N. A. Khan, T. Hameed, An implementation of Haar wavelet based method for numerical treatment of time-fractional Schrödinger and coupled Schrödinger systems, IEEE/CAA Journal of Automatica Sinica 6 (1) (2019) 177-187.
  • I. S. Hamad, K. K. Ali, Investigation of Brownian motion in stochastic Schrödinger wave equation using the modified generalized Riccati equation mapping method, Optical and Quantum Electronics 56 (6) (2024) 1-23.
  • Y. Du, T. Yin, J. Pang, The exact solutions of Schrödinger-Hirota equation based on the auxiliary equation method, Optical and Quantum Electronics 56 (5) (2024) 712.
  • M. I. Khan, A. Farooq, K. S. Nisar, N. A. Shah, Unveiling new exact solutions of the unstable nonlinear Schrödinger equation using the improved modified Sardar sub-equation method, Results in Physics 59 (2024) 107593.
  • B. Kopçaşız, Qualitative analysis and optical soliton solutions galore: Scrutinizing the (2+1)-dimensional complex modified Korteweg-de Vries system, Nonlinear Dynamics 112 (23) (2024) 21321-21341.
  • M. Mirzazadeh, L. Akinyemi, M. Şenol, K. Hosseini, A variety of solitons to the sixth-order dispersive (3+1)-dimensional nonlinear time-fractional Schrödinger equation with cubic-quintic-septic nonlinearities, Optik 241 (2021) 166318.
  • V. Ala, G. Shaikhova, Analytical solutions of nonlinear Beta fractional Schrödinger equation via Sine-Cosine method, Lobachevskii Journal of Mathematics 43 (11) (2022) 3033-3038.
  • F. N. Kaya Sağlam, New analytical wave structures for the (2+1)-dimensional Chaffee-Infante equation, Universal Journal of Mathematics and Applications 8 (1) (2025) 41-55.
  • H. U. Rehman, G. S. Said, A. Amer, H. Ashraf, M. M. Tharwat, M. Abdel-Aty, M. S. Osman, Unraveling the (4+1)-dimensional Davey-Stewartson-Kadomtsev-Petviashvili equation: Exploring soliton solutions via multiple techniques, Alexandria Engineering Journal 90 (2024) 17-23.
  • B. Kopçasız, E. Yaşar, Dual-mode nonlinear Schrödinger equation (DMNLSE): Lie group analysis, group invariant solutions, and conservation laws, International Journal of Modern Physics B 38 (02) (2024) 2450020.
  • M. J. Ablowitz, Nonlinear dispersive waves: Asymptotic analysis and solitons, Cambridge University Press, 2011.
  • V. N. Serkin, A. Hasegawa, Novel soliton solutions of the nonlinear Schrödinger equation model, Physical Review Letters 85 (21) (2000) 4502.
  • Y. Gurefe, The generalized Kudryashov method for the nonlinear fractional partial differential equations with the beta-derivative, Revista Mexicana de Física 66 (6) (2020) 771-781.
  • H. Ahmad, M. N. Alam, M. A. Rahim, M. F. Alotaibi, M. Omri, The unified technique for the nonlinear time-fractional model with the beta-derivative, Results in Physics 29 (2021) 104785.
  • M. I. Asjad, M. Inc, W. A. Faridi, M. A. Bakar, T. Muhammad, H. Rezazadeh, Optical solitonic structures with singular and non-singular kernel for nonlinear fractional model in quantum mechanics, Optical and Quantum Electronics 55 (3) (2023) 219.
  • J. V. da C. Sousa, E. C. de Oliveira, A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties, International Journal of Analysis and Applications 16 (1) (2018) 83-96.
  • W. Liu, K. Chen, The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations, Pramana 81 (2013) 377-384.
  • M. Wang, Y. Wang, A new Bäcklund transformation and multi-soliton solutions to the KdV equation with general variable coefficients, Physics Letters A 287 (3-4) (2001) 211-216.
  • K. J. Wang, J. H. Liu, Periodic solution of the time-space fractional Sasa-Satsuma equation in the monomode optical fibers by the energy balance theory, Europhysics Letters 138 (2) (2022) 25002.

Exploring Soliton Solutions of the Nonlinear Time-Fractional Schrödinger Model via M-Truncated and Atangana-Baleanu Fractional Operators

Year 2025, Issue: 51, 92 - 106, 30.06.2025
https://doi.org/10.53570/jnt.1702949

Abstract

This study investigates the nonlinear time-fractional Schrödinger model by utilizing this prototype in fields like nonlinear optics, plasma physics, soliton theory, quantum field theory, and dark matter/neural network modeling. It analyzes the equation to reveal key insights into fundamental physical phenomena, advancing novel technological applications. The paper presents fractional derivatives using M-truncated and Atangana-Baleanu operators. The approach employs Bäcklund transformation and Wang’s direct mapping method to derive soliton solutions, including exponential, sin-cos, sinh-cosh, rational, trigonometric, and hyperbolic forms. The present study constructs the energy balance method via the problem’s Hamiltonian and variational principle, offering a promising approach. It complements analytical results with numerical simulations to enhance understanding of solution behavior. The study provides foundations for further exploration, ensuring practical, reliable solutions for complex nonlinear problems. The methods prove robust, efficient, and applicable to diverse nonlinear PDEs.

References

  • M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation & Applications 1 (2) (2015) 73-85.
  • A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science 20 (2) (2016) 763-769.
  • F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas, Fractional calculus and continuous-time finance II: The waiting-time distribution, Physica A: Statistical Mechanics and its Applications 287 (3-4) (2000) 468-481.
  • N. Laskin, Fractional market dynamics, Physica A: Statistical Mechanics and its Applications 287 (3-4) (2000) 482-492.
  • A. Ercan, Fractional kinetic models for drying using a semi-empirical method in the framework of different types of kernels, Symmetry 17 (4) (2025) 483.
  • A. Ercan, Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels, AIMS Mathematics 7 (7) (2022) 13325-13343.
  • M. Naber, Time fractional Schrödinger equation, Journal of Mathematical Physics 45 (8) (2004) 3339-3352.
  • N. A. Khan, T. Hameed, An implementation of Haar wavelet based method for numerical treatment of time-fractional Schrödinger and coupled Schrödinger systems, IEEE/CAA Journal of Automatica Sinica 6 (1) (2019) 177-187.
  • I. S. Hamad, K. K. Ali, Investigation of Brownian motion in stochastic Schrödinger wave equation using the modified generalized Riccati equation mapping method, Optical and Quantum Electronics 56 (6) (2024) 1-23.
  • Y. Du, T. Yin, J. Pang, The exact solutions of Schrödinger-Hirota equation based on the auxiliary equation method, Optical and Quantum Electronics 56 (5) (2024) 712.
  • M. I. Khan, A. Farooq, K. S. Nisar, N. A. Shah, Unveiling new exact solutions of the unstable nonlinear Schrödinger equation using the improved modified Sardar sub-equation method, Results in Physics 59 (2024) 107593.
  • B. Kopçaşız, Qualitative analysis and optical soliton solutions galore: Scrutinizing the (2+1)-dimensional complex modified Korteweg-de Vries system, Nonlinear Dynamics 112 (23) (2024) 21321-21341.
  • M. Mirzazadeh, L. Akinyemi, M. Şenol, K. Hosseini, A variety of solitons to the sixth-order dispersive (3+1)-dimensional nonlinear time-fractional Schrödinger equation with cubic-quintic-septic nonlinearities, Optik 241 (2021) 166318.
  • V. Ala, G. Shaikhova, Analytical solutions of nonlinear Beta fractional Schrödinger equation via Sine-Cosine method, Lobachevskii Journal of Mathematics 43 (11) (2022) 3033-3038.
  • F. N. Kaya Sağlam, New analytical wave structures for the (2+1)-dimensional Chaffee-Infante equation, Universal Journal of Mathematics and Applications 8 (1) (2025) 41-55.
  • H. U. Rehman, G. S. Said, A. Amer, H. Ashraf, M. M. Tharwat, M. Abdel-Aty, M. S. Osman, Unraveling the (4+1)-dimensional Davey-Stewartson-Kadomtsev-Petviashvili equation: Exploring soliton solutions via multiple techniques, Alexandria Engineering Journal 90 (2024) 17-23.
  • B. Kopçasız, E. Yaşar, Dual-mode nonlinear Schrödinger equation (DMNLSE): Lie group analysis, group invariant solutions, and conservation laws, International Journal of Modern Physics B 38 (02) (2024) 2450020.
  • M. J. Ablowitz, Nonlinear dispersive waves: Asymptotic analysis and solitons, Cambridge University Press, 2011.
  • V. N. Serkin, A. Hasegawa, Novel soliton solutions of the nonlinear Schrödinger equation model, Physical Review Letters 85 (21) (2000) 4502.
  • Y. Gurefe, The generalized Kudryashov method for the nonlinear fractional partial differential equations with the beta-derivative, Revista Mexicana de Física 66 (6) (2020) 771-781.
  • H. Ahmad, M. N. Alam, M. A. Rahim, M. F. Alotaibi, M. Omri, The unified technique for the nonlinear time-fractional model with the beta-derivative, Results in Physics 29 (2021) 104785.
  • M. I. Asjad, M. Inc, W. A. Faridi, M. A. Bakar, T. Muhammad, H. Rezazadeh, Optical solitonic structures with singular and non-singular kernel for nonlinear fractional model in quantum mechanics, Optical and Quantum Electronics 55 (3) (2023) 219.
  • J. V. da C. Sousa, E. C. de Oliveira, A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties, International Journal of Analysis and Applications 16 (1) (2018) 83-96.
  • W. Liu, K. Chen, The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations, Pramana 81 (2013) 377-384.
  • M. Wang, Y. Wang, A new Bäcklund transformation and multi-soliton solutions to the KdV equation with general variable coefficients, Physics Letters A 287 (3-4) (2001) 211-216.
  • K. J. Wang, J. H. Liu, Periodic solution of the time-space fractional Sasa-Satsuma equation in the monomode optical fibers by the energy balance theory, Europhysics Letters 138 (2) (2022) 25002.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Research Article
Authors

Fatma Nur Kaya Sağlam 0000-0001-7488-3254

Submission Date May 20, 2025
Acceptance Date June 21, 2025
Early Pub Date June 30, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Issue: 51

Cite

APA Kaya Sağlam, F. N. (2025). Exploring Soliton Solutions of the Nonlinear Time-Fractional Schrödinger Model via M-Truncated and Atangana-Baleanu Fractional Operators. Journal of New Theory(51), 92-106. https://doi.org/10.53570/jnt.1702949
AMA Kaya Sağlam FN. Exploring Soliton Solutions of the Nonlinear Time-Fractional Schrödinger Model via M-Truncated and Atangana-Baleanu Fractional Operators. JNT. June 2025;(51):92-106. doi:10.53570/jnt.1702949
Chicago Kaya Sağlam, Fatma Nur. “Exploring Soliton Solutions of the Nonlinear Time-Fractional Schrödinger Model via M-Truncated and Atangana-Baleanu Fractional Operators”. Journal of New Theory, no. 51 (June 2025): 92-106. https://doi.org/10.53570/jnt.1702949.
EndNote Kaya Sağlam FN (June 1, 2025) Exploring Soliton Solutions of the Nonlinear Time-Fractional Schrödinger Model via M-Truncated and Atangana-Baleanu Fractional Operators. Journal of New Theory 51 92–106.
IEEE F. N. Kaya Sağlam, “Exploring Soliton Solutions of the Nonlinear Time-Fractional Schrödinger Model via M-Truncated and Atangana-Baleanu Fractional Operators”, JNT, no. 51, pp. 92–106, June2025, doi: 10.53570/jnt.1702949.
ISNAD Kaya Sağlam, Fatma Nur. “Exploring Soliton Solutions of the Nonlinear Time-Fractional Schrödinger Model via M-Truncated and Atangana-Baleanu Fractional Operators”. Journal of New Theory 51 (June2025), 92-106. https://doi.org/10.53570/jnt.1702949.
JAMA Kaya Sağlam FN. Exploring Soliton Solutions of the Nonlinear Time-Fractional Schrödinger Model via M-Truncated and Atangana-Baleanu Fractional Operators. JNT. 2025;:92–106.
MLA Kaya Sağlam, Fatma Nur. “Exploring Soliton Solutions of the Nonlinear Time-Fractional Schrödinger Model via M-Truncated and Atangana-Baleanu Fractional Operators”. Journal of New Theory, no. 51, 2025, pp. 92-106, doi:10.53570/jnt.1702949.
Vancouver Kaya Sağlam FN. Exploring Soliton Solutions of the Nonlinear Time-Fractional Schrödinger Model via M-Truncated and Atangana-Baleanu Fractional Operators. JNT. 2025(51):92-106.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).