Research Article
BibTex RIS Cite
Year 2021, , 1 - 10, 30.06.2021
https://doi.org/10.53570/jnt.798677

Abstract

References

  • Y. Imai, K. Iseki, On Axiom Systems of Propositional Calculi 14, Proceedings of the Japan Academy 42 (1) (1966) 19-22.
  • K. Iseki, S. Tanaka, An Introduction to the Theory of BCK-Algebras, Mathematics 23 (1978) 1-26.
  • A. N Prior, Formal Logic, 2nd edition, Oxford, 1962.
  • K. Iseki, On Ideals in BCK-Algebras, Mathematics Seminar Note Kobe University 3(1) (1975) 1-12.
  • K. Iseki, Some Topics from the Category of BCK-Algebra, Mathematics Seminar Note 7 (1978) 465-468.
  • J. Meng, Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co., Seoul Korea, 1994.
  • J. P. Holms, Poincare, Celestial Mechanics, Dynamical-Systems Theory and Chaos, Physics Reports 193(3) (1990) 137-163.
  • T. W. Gamelin, A History of Complex Dynamics,from Schroder to Fatou and Julia, By Daniel S. Alexander. Wiesbaden (Vieweg). Historia Mathematica, 23(1) (1996) 74-86.
  • G. D. Birkhoff, Dynamical systems, American Mathematical Society, (9), 1927.
  • K. S. Sibirskii, Introduction to Topological Dynamics, Noordhoff International Pub., 1975.
  • R. L. Devaney, Chaotic Dynamical System (second edition), Addison-Wesley, 1989.
  • E. M. Lui, Structural Stability, Structural Engineering and Geomechanics-Volume 1, 2020.
  • C. E. Silva, Invitation to Ergodic Theory, American Mathematical Society, 2008.
  • D. Dikranjan, A. G. Bruno, Discrete Dynamical Systems in Group Theory, Note di Matematica 33(1) (2013) 1-48.
  • D. Khan, A. Rehman, N. Sheikh, S. Iqbal, I. Ahmed, Properties of Discrete Dynamical System in BCI-Algebra, International Journal of Management and Fuzzy Systems 6(3) (2020) 53-58.
  • H. Yutani, Co-equalizer in the Category of BCK-algebras. Mathematics Seminar Notes 6(2) (1978) 187-188.
  • A. Dvurecenskij, On Categorical Equivalences of Commutative BCK-Algebras, An International Journal for Symbolic Logic 64(1) (2000) 21-36.
  • G. Muhiuddin, H. S. Kim, S. Z. Song, Y. B. Jun, Hesitant Fuzzy Translations and Extensions of Subalgebras and Ideals in BCK/BCI-Algebras, Journal of Intelligent and Fuzzy Systems 32(1) (2017) 43-48.
  • Y. B. Jun, S. S. Ahn, G. Muhiuddin, Hesitant Fuzzy Soft Subalgebras and Ideals in BCK/BCI-Algebras, The Scientific World Journal Article ID 763929 (2014) 7 pages.
  • Y. B. Jun, G. Muhiuddin, A. M. Al-roqi, Ideal theory of BCK/BCI-Algebras based on Double-Framed Soft Sets, Applied Mathematics & Information Sciences 7(5) (2013) 1879-1887.
  • Y. B. Jun, G. Muhiuddin, M. A. Öztürk, E. H. Roh, Cubic Soft Ideals in BCK/BCI-Algebras, Journal of Computational Analysis and Applications 22(5) (2017) 929-940.

A New View of Homomorphic Properties of BCK-Algebra in Terms of Some Notions of Discrete Dynamical System

Year 2021, , 1 - 10, 30.06.2021
https://doi.org/10.53570/jnt.798677

Abstract

In the present manuscript, we introduce the concept of a discrete dynamical system (Ⱬ,Ψ) in BCK-algebra where Ⱬ is a BCK-algebra and Ψ is a homomorphism from Ⱬ to Ⱬ and establish some of their related properties. We prove that the set of all fixed points and the set of all periodic points in BCK-algebra Ⱬ are the BCK-subalgebras. We show that when a subset of BCK-algebra Ⱬ is invariant concerning Ψ. We prove that the set of all fixed points and the set of all periodic points in commutative BCK-algebra Ⱬ with relative cancellation property are the ideals of Ⱬ. We also prove that the set of all fixed points in Ⱬ is an S-invariant subset of a BCK-algebra Ⱬ.

References

  • Y. Imai, K. Iseki, On Axiom Systems of Propositional Calculi 14, Proceedings of the Japan Academy 42 (1) (1966) 19-22.
  • K. Iseki, S. Tanaka, An Introduction to the Theory of BCK-Algebras, Mathematics 23 (1978) 1-26.
  • A. N Prior, Formal Logic, 2nd edition, Oxford, 1962.
  • K. Iseki, On Ideals in BCK-Algebras, Mathematics Seminar Note Kobe University 3(1) (1975) 1-12.
  • K. Iseki, Some Topics from the Category of BCK-Algebra, Mathematics Seminar Note 7 (1978) 465-468.
  • J. Meng, Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co., Seoul Korea, 1994.
  • J. P. Holms, Poincare, Celestial Mechanics, Dynamical-Systems Theory and Chaos, Physics Reports 193(3) (1990) 137-163.
  • T. W. Gamelin, A History of Complex Dynamics,from Schroder to Fatou and Julia, By Daniel S. Alexander. Wiesbaden (Vieweg). Historia Mathematica, 23(1) (1996) 74-86.
  • G. D. Birkhoff, Dynamical systems, American Mathematical Society, (9), 1927.
  • K. S. Sibirskii, Introduction to Topological Dynamics, Noordhoff International Pub., 1975.
  • R. L. Devaney, Chaotic Dynamical System (second edition), Addison-Wesley, 1989.
  • E. M. Lui, Structural Stability, Structural Engineering and Geomechanics-Volume 1, 2020.
  • C. E. Silva, Invitation to Ergodic Theory, American Mathematical Society, 2008.
  • D. Dikranjan, A. G. Bruno, Discrete Dynamical Systems in Group Theory, Note di Matematica 33(1) (2013) 1-48.
  • D. Khan, A. Rehman, N. Sheikh, S. Iqbal, I. Ahmed, Properties of Discrete Dynamical System in BCI-Algebra, International Journal of Management and Fuzzy Systems 6(3) (2020) 53-58.
  • H. Yutani, Co-equalizer in the Category of BCK-algebras. Mathematics Seminar Notes 6(2) (1978) 187-188.
  • A. Dvurecenskij, On Categorical Equivalences of Commutative BCK-Algebras, An International Journal for Symbolic Logic 64(1) (2000) 21-36.
  • G. Muhiuddin, H. S. Kim, S. Z. Song, Y. B. Jun, Hesitant Fuzzy Translations and Extensions of Subalgebras and Ideals in BCK/BCI-Algebras, Journal of Intelligent and Fuzzy Systems 32(1) (2017) 43-48.
  • Y. B. Jun, S. S. Ahn, G. Muhiuddin, Hesitant Fuzzy Soft Subalgebras and Ideals in BCK/BCI-Algebras, The Scientific World Journal Article ID 763929 (2014) 7 pages.
  • Y. B. Jun, G. Muhiuddin, A. M. Al-roqi, Ideal theory of BCK/BCI-Algebras based on Double-Framed Soft Sets, Applied Mathematics & Information Sciences 7(5) (2013) 1879-1887.
  • Y. B. Jun, G. Muhiuddin, M. A. Öztürk, E. H. Roh, Cubic Soft Ideals in BCK/BCI-Algebras, Journal of Computational Analysis and Applications 22(5) (2017) 929-940.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Dawood Khan 0000-0002-6850-6783

Abdul Rehman This is me 0000-0003-2569-8540

Publication Date June 30, 2021
Submission Date September 22, 2020
Published in Issue Year 2021

Cite

APA Khan, D., & Rehman, A. (2021). A New View of Homomorphic Properties of BCK-Algebra in Terms of Some Notions of Discrete Dynamical System. Journal of New Theory(35), 1-10. https://doi.org/10.53570/jnt.798677
AMA Khan D, Rehman A. A New View of Homomorphic Properties of BCK-Algebra in Terms of Some Notions of Discrete Dynamical System. JNT. June 2021;(35):1-10. doi:10.53570/jnt.798677
Chicago Khan, Dawood, and Abdul Rehman. “A New View of Homomorphic Properties of BCK-Algebra in Terms of Some Notions of Discrete Dynamical System”. Journal of New Theory, no. 35 (June 2021): 1-10. https://doi.org/10.53570/jnt.798677.
EndNote Khan D, Rehman A (June 1, 2021) A New View of Homomorphic Properties of BCK-Algebra in Terms of Some Notions of Discrete Dynamical System. Journal of New Theory 35 1–10.
IEEE D. Khan and A. Rehman, “A New View of Homomorphic Properties of BCK-Algebra in Terms of Some Notions of Discrete Dynamical System”, JNT, no. 35, pp. 1–10, June 2021, doi: 10.53570/jnt.798677.
ISNAD Khan, Dawood - Rehman, Abdul. “A New View of Homomorphic Properties of BCK-Algebra in Terms of Some Notions of Discrete Dynamical System”. Journal of New Theory 35 (June 2021), 1-10. https://doi.org/10.53570/jnt.798677.
JAMA Khan D, Rehman A. A New View of Homomorphic Properties of BCK-Algebra in Terms of Some Notions of Discrete Dynamical System. JNT. 2021;:1–10.
MLA Khan, Dawood and Abdul Rehman. “A New View of Homomorphic Properties of BCK-Algebra in Terms of Some Notions of Discrete Dynamical System”. Journal of New Theory, no. 35, 2021, pp. 1-10, doi:10.53570/jnt.798677.
Vancouver Khan D, Rehman A. A New View of Homomorphic Properties of BCK-Algebra in Terms of Some Notions of Discrete Dynamical System. JNT. 2021(35):1-10.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).