Year 2021,
, 11 - 19, 30.06.2021
Parimala Mani
,
Arivuoli Dhandapanı
References
- K. Kuratowski, Topology, Vol. I, Academic Press, Newyork, 1996.
- R. Vaidyanathaswamy. The Localization Theory in Set Topology, Proceedings of the Indian Academy of Sciences-Section A 20 (1944) 51-61.
- H. Maki, J. Umehara, T. Noiri. Every Topological Spaces in pre T_(1/2), Memoirs of the Faculty of Science Kochi University Series A Mathematics 17 (1996) 33-42.
- N. Levine, Generalised Closed Sets in Topology, Rendiconti del Circolo Matematico di Palermo 2(19) (1970) 89-96.
W. K. Min, αm-Open Sets and αm-Continuous Functions, Communications of the Korean Mathematical Society 25(2) (2010) 251-256.
T. Noiri, V. Popa, A Unified Theory of Closed Functions, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie 49(97) (2006) 371-382.
- V. Popa, T. Noiri, On Weakly (τ,m)-Continuous Functions, Rendiconti Del Circolo Matematico Di Palermo, Serie II, TomoLi (2002) 295-310.
- V. Popa, T. Noiri, On m-Continuous Functions, Annals of Dun\u area de Jos University of Galati. Fascicle II, Mathematics, Physics, Theoretical Mechanics 18(23) (2000) 31-41.
- M. Singha, S. D. Sarkar, Towards Urysohn's Lemma in Minimal Structures, International Journal of Pure and Applied Mathematics 85(2) (2013) 255-263.
O. B. Özbakır, E. D. Yıldırım, On Some Closed Sets in Ideal Minimal Spaces, Acta Mathematica Hungarica 125(3) (2009) 227-235.
- H. Li, Z. Li, On mIg-Normal Spaces, Journal of Applied Functional Analysis 7(1-2) (2012) 185-193.
- D. Arivuoli, M. Parimala, On α Generalised Closed Sets in Ideal Minimal Spaces, Asia Life Sciences 1 (2017) 85-92.
M. Parimala, D. Arivuoli, R.Perumal, On Some Locally Closed Sets in Ideal Minimal Spaces, International Journal of Pure and Applied Mathematics, 113(12) (2017) 230-238.
- M. Parimala, D. Arivuoli, S. Krithika, Separation Axioms in Ideal Minimal Spaces, International Journal of Recent Technology and Engineering 7(4S2) (2018) 373-375.
- T. Noiri, V. Popa, On m-D-Separation Axioms, istanbul University Science Faculty the Journal of Mathematics, Physics and Astronomy 61-62 (2002-2003) 15-28.
- M. Parimala, D. Arivuoli, Submaximality under mIαg-Closed Sets in Ideal Minimal Spaces, Asia Mathematika 3(2) (2019) 63-71.
A Note on Urysohn’s Lemma under mIαg-Normal Spaces and mIαg-Regular Spaces in Ideal Minimal Space
Year 2021,
, 11 - 19, 30.06.2021
Parimala Mani
,
Arivuoli Dhandapanı
Abstract
This research article is concerned with the introduction of a new notion of normal spaces and regular spaces, namely mIαg-normal spaces and mIαg-regular spaces. We established their significant properties in ideal minimal spaces. Some equivalent conditions on mIαg-normal spaces and mIαg-regular spaces are proved. Urysohn's Lemma on mIαg-normal spaces is also established.
References
- K. Kuratowski, Topology, Vol. I, Academic Press, Newyork, 1996.
- R. Vaidyanathaswamy. The Localization Theory in Set Topology, Proceedings of the Indian Academy of Sciences-Section A 20 (1944) 51-61.
- H. Maki, J. Umehara, T. Noiri. Every Topological Spaces in pre T_(1/2), Memoirs of the Faculty of Science Kochi University Series A Mathematics 17 (1996) 33-42.
- N. Levine, Generalised Closed Sets in Topology, Rendiconti del Circolo Matematico di Palermo 2(19) (1970) 89-96.
W. K. Min, αm-Open Sets and αm-Continuous Functions, Communications of the Korean Mathematical Society 25(2) (2010) 251-256.
T. Noiri, V. Popa, A Unified Theory of Closed Functions, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie 49(97) (2006) 371-382.
- V. Popa, T. Noiri, On Weakly (τ,m)-Continuous Functions, Rendiconti Del Circolo Matematico Di Palermo, Serie II, TomoLi (2002) 295-310.
- V. Popa, T. Noiri, On m-Continuous Functions, Annals of Dun\u area de Jos University of Galati. Fascicle II, Mathematics, Physics, Theoretical Mechanics 18(23) (2000) 31-41.
- M. Singha, S. D. Sarkar, Towards Urysohn's Lemma in Minimal Structures, International Journal of Pure and Applied Mathematics 85(2) (2013) 255-263.
O. B. Özbakır, E. D. Yıldırım, On Some Closed Sets in Ideal Minimal Spaces, Acta Mathematica Hungarica 125(3) (2009) 227-235.
- H. Li, Z. Li, On mIg-Normal Spaces, Journal of Applied Functional Analysis 7(1-2) (2012) 185-193.
- D. Arivuoli, M. Parimala, On α Generalised Closed Sets in Ideal Minimal Spaces, Asia Life Sciences 1 (2017) 85-92.
M. Parimala, D. Arivuoli, R.Perumal, On Some Locally Closed Sets in Ideal Minimal Spaces, International Journal of Pure and Applied Mathematics, 113(12) (2017) 230-238.
- M. Parimala, D. Arivuoli, S. Krithika, Separation Axioms in Ideal Minimal Spaces, International Journal of Recent Technology and Engineering 7(4S2) (2018) 373-375.
- T. Noiri, V. Popa, On m-D-Separation Axioms, istanbul University Science Faculty the Journal of Mathematics, Physics and Astronomy 61-62 (2002-2003) 15-28.
- M. Parimala, D. Arivuoli, Submaximality under mIαg-Closed Sets in Ideal Minimal Spaces, Asia Mathematika 3(2) (2019) 63-71.