Generalized Pre α-Closed Sets in Topology
Year 2018,
Issue: 20, 48 - 56, 26.01.2018
Praveen Hanamantrao Patil
Prakashgouda Guranagouda Patil
Abstract
In this paper, a new class of sets called generalized pre α-closed sets are introduced and studied in topological spaces, which are properly placed between the class of pre closed and the class of generalized star pre closed (g*p-closed) sets.
References
- [1] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1) (1986) 24-32.
- [2] S. P. Arya and T. M. Nour, Charactrezations of s-Normal spaces, Indian Jl.Pure
and Appld.Math., 21 (1990) 717-719.
- [3] S. S. Benchalli, P. G. Patil and T. D. Rayanagoudar, !®-closed sets in topo-
logical spaces, The Global Jl. Appl. Maths and Math Sciences, 2 (2009) 53-63.
- [4] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, The
Indian. Jl. Math, 29 (3) (1987) 375-382.
- [5] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci., Kochi Univ.,
Ser. A. Math, 16 (1995) 35-48.
- [6] W. Dunham and N. Levine, Further results on generalized closed sets in topol-
ogy, Kyungpook Math. Jl, 20 (1980) 169-175.
- [7] Y. Gnanambal, On Generalized pre-regular closed sets in topological spaces,
Indian Jl. Pure. Appl. Math. 28 (3) (1997) 351-360.
- [8] S. Jafari, S. S. Benchalli, P. G. Patil and T. D. Rayanagoudar, Pre g*-closed
sets in topological spaces, Jl. of Advanced Studies in Topology, 3 (2012) 55-59.
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer.
Math. Monthly 70 (1963) 36-41.
- [10] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19
(2)(1970) 89-96.
- [11] H. Maki, Generalized ¤-sets and associated closure operator, The Special Issue
in Commemoration of Prof. Kazusada IKEDA's Retirement, (1986) 139-146.
- [12] H. Maki, R. Devi and K. Balachandran, Generalized ®-closed sets in topology,
Bull. Fukuoka Uni. Ed. Part III, 42 (1993) 13-21.
- [13] H. Maki, J.Umehare and T.Nori, Every topological space is Pre-T1=2,
Mem.Fac.Soc.Kochi Univ.Math.,17(1996) 32-42.
- [14] A. S. Mashhour, M. E. Abd El-Monesf and S. N. El-Deeb, On pre-continuous
and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982)
47-53.
- [15] A. S. Mashhour, M. E. Abd El-Monesf and S. N. El-Deeb, ®-continuous and
®-open mappings, Acta Math Hung. 41 (1983) 213-218.
- [16] O. Njasted, On some classes of nearly open sets, Paci¯c Jl. Math, 15 (1965)
961-970.
- [17] M. Stone, Absolutely FG spaces, Proc. Amer. Math. Soc., 80 (1980) 515-520.
- [18] P. Sundaram and M. Sheik John, On !-closed sets in topology, Acta. Ciencia
Indica, 4 (2000) 389-392.
- [19] M. K. R. S. Veerakumar, g*pre-closed sets, Acta. Ciencia Indica, 28 (2002)
51-60.
Year 2018,
Issue: 20, 48 - 56, 26.01.2018
Praveen Hanamantrao Patil
Prakashgouda Guranagouda Patil
References
- [1] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1) (1986) 24-32.
- [2] S. P. Arya and T. M. Nour, Charactrezations of s-Normal spaces, Indian Jl.Pure
and Appld.Math., 21 (1990) 717-719.
- [3] S. S. Benchalli, P. G. Patil and T. D. Rayanagoudar, !®-closed sets in topo-
logical spaces, The Global Jl. Appl. Maths and Math Sciences, 2 (2009) 53-63.
- [4] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, The
Indian. Jl. Math, 29 (3) (1987) 375-382.
- [5] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci., Kochi Univ.,
Ser. A. Math, 16 (1995) 35-48.
- [6] W. Dunham and N. Levine, Further results on generalized closed sets in topol-
ogy, Kyungpook Math. Jl, 20 (1980) 169-175.
- [7] Y. Gnanambal, On Generalized pre-regular closed sets in topological spaces,
Indian Jl. Pure. Appl. Math. 28 (3) (1997) 351-360.
- [8] S. Jafari, S. S. Benchalli, P. G. Patil and T. D. Rayanagoudar, Pre g*-closed
sets in topological spaces, Jl. of Advanced Studies in Topology, 3 (2012) 55-59.
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer.
Math. Monthly 70 (1963) 36-41.
- [10] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19
(2)(1970) 89-96.
- [11] H. Maki, Generalized ¤-sets and associated closure operator, The Special Issue
in Commemoration of Prof. Kazusada IKEDA's Retirement, (1986) 139-146.
- [12] H. Maki, R. Devi and K. Balachandran, Generalized ®-closed sets in topology,
Bull. Fukuoka Uni. Ed. Part III, 42 (1993) 13-21.
- [13] H. Maki, J.Umehare and T.Nori, Every topological space is Pre-T1=2,
Mem.Fac.Soc.Kochi Univ.Math.,17(1996) 32-42.
- [14] A. S. Mashhour, M. E. Abd El-Monesf and S. N. El-Deeb, On pre-continuous
and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982)
47-53.
- [15] A. S. Mashhour, M. E. Abd El-Monesf and S. N. El-Deeb, ®-continuous and
®-open mappings, Acta Math Hung. 41 (1983) 213-218.
- [16] O. Njasted, On some classes of nearly open sets, Paci¯c Jl. Math, 15 (1965)
961-970.
- [17] M. Stone, Absolutely FG spaces, Proc. Amer. Math. Soc., 80 (1980) 515-520.
- [18] P. Sundaram and M. Sheik John, On !-closed sets in topology, Acta. Ciencia
Indica, 4 (2000) 389-392.
- [19] M. K. R. S. Veerakumar, g*pre-closed sets, Acta. Ciencia Indica, 28 (2002)
51-60.