Research Article
BibTex RIS Cite

Generalized Cubic Aggregation Operators with Application in Decision Making Problem

Year 2018, Issue: 21, 1 - 30, 27.02.2018

Abstract

There are many aggregation operators and their applications have been developed up to date, but in this paper we introduced the idea of generalized aggregation operator. The main idea of this paper is to study the generalized aggregation operators with cubic numbers. In this paper, we introduced three types of cubic aggregation operators called generalized cubic weighted averaging (GCWA) operator, generalized cubic ordered weighted averaging (GCOWA) operator and generalized cubic hybrid averaging (GCHA) operator. We extend the theory of cubic numbers to generalized ordered weighted averaging operators that are characterized by interval membership and exact membership. In last section we provide an application of these aggregation operators to multiple attribute group decision making problem.

References

  • [1] Zadeh L A, Fuzzy sets, Inform Control, (8) (1965) 338 - 353
  • [2] Atanassov K, Intuitionistic fuzzy sets, Fuzzy Sets Syst, (20) (1986) 87 - 96
  • [3] Boran F E, Genc S, Kurt M, Akay D A, multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method, Expert Systems with Applications, (36) (2009) 11363 - 11368
  • [4] Wei G W, GRA method for multiple attribute decision making with incomplete weight information in intuitionistic fuzzy setting, Knowledge- Based Systems, (23) (2010) 243 - 47
  • [5] Xu Z S, Da Q L, An overview of operators for aggregating information, Int J Intell Syst, (18) (2003) 953- 969
  • [6] Xu Z S, Intuitionistic fuzzy aggregation operators, IEEE Trans Fuzzy Syst, (15) (2007) 1179 - 1187
  • [7] Xu Z S, Yager R R, Dynamic intuitionistic fuzzy multiple attribute decision making, International Journal of Approximate Reasoning, (48) (2008) 246 - 262 [8] Jun Y B, Kim C S, Yang K O, Cubic sets, Ann. Fuzzy Math. Inf, (4) (2012) 83 - 98
  • [9] Sambuc R , Functions - Flous, Application à l'aide au Diagnostic en Pathologie Thyroidienne, Thèse de Doctorat en Medecine, Marseille, 1975
  • [10] Turksen I B, Interval-valued fuzzy sets and compensatory AND, Fuzzy Sets Syst, (51) (1992) 295 - 307
  • [11] Turksen I B, Interval-valued strict preference with Zadeh triples, Fuzzy Sets Syst, (78) (1996) 183 - 195.
  • [12] Jun Y B, Kim C S, Kang M S, Cubic subalgebras and ideals of BCK/BCI-algebras, Far Ease J Math Sci, (44) (2010) 239 - 250
  • [13] Jun Y B, Kim C S, Kang J G, Cubic q-ideals of BCI-algebras, Ann Fuzzy Math Inf, (1) (2011a) 25 - 34.
  • [14] Jun Y B, Lee K J, Kang M S, Cubic structures applied to ideals of BCI-algebras, Comput Math Appl, (62) (2011b) 3334 -3342
  • [15] Yager R R, Kacprzyk J, Beliakov G, Recent Developments in the Ordered Weighted Averaging Operators, Theory and Practice, Springer-Verlag, Berlin, 2010
  • [16] Zhao H, Xu Z S, Ni M F, Liu S S, Generalized aggregation operators for intuitionistic fuzzy sets, International Journal of Intelligent Systems, (25) (2010) 1 - 30
Year 2018, Issue: 21, 1 - 30, 27.02.2018

Abstract

References

  • [1] Zadeh L A, Fuzzy sets, Inform Control, (8) (1965) 338 - 353
  • [2] Atanassov K, Intuitionistic fuzzy sets, Fuzzy Sets Syst, (20) (1986) 87 - 96
  • [3] Boran F E, Genc S, Kurt M, Akay D A, multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method, Expert Systems with Applications, (36) (2009) 11363 - 11368
  • [4] Wei G W, GRA method for multiple attribute decision making with incomplete weight information in intuitionistic fuzzy setting, Knowledge- Based Systems, (23) (2010) 243 - 47
  • [5] Xu Z S, Da Q L, An overview of operators for aggregating information, Int J Intell Syst, (18) (2003) 953- 969
  • [6] Xu Z S, Intuitionistic fuzzy aggregation operators, IEEE Trans Fuzzy Syst, (15) (2007) 1179 - 1187
  • [7] Xu Z S, Yager R R, Dynamic intuitionistic fuzzy multiple attribute decision making, International Journal of Approximate Reasoning, (48) (2008) 246 - 262 [8] Jun Y B, Kim C S, Yang K O, Cubic sets, Ann. Fuzzy Math. Inf, (4) (2012) 83 - 98
  • [9] Sambuc R , Functions - Flous, Application à l'aide au Diagnostic en Pathologie Thyroidienne, Thèse de Doctorat en Medecine, Marseille, 1975
  • [10] Turksen I B, Interval-valued fuzzy sets and compensatory AND, Fuzzy Sets Syst, (51) (1992) 295 - 307
  • [11] Turksen I B, Interval-valued strict preference with Zadeh triples, Fuzzy Sets Syst, (78) (1996) 183 - 195.
  • [12] Jun Y B, Kim C S, Kang M S, Cubic subalgebras and ideals of BCK/BCI-algebras, Far Ease J Math Sci, (44) (2010) 239 - 250
  • [13] Jun Y B, Kim C S, Kang J G, Cubic q-ideals of BCI-algebras, Ann Fuzzy Math Inf, (1) (2011a) 25 - 34.
  • [14] Jun Y B, Lee K J, Kang M S, Cubic structures applied to ideals of BCI-algebras, Comput Math Appl, (62) (2011b) 3334 -3342
  • [15] Yager R R, Kacprzyk J, Beliakov G, Recent Developments in the Ordered Weighted Averaging Operators, Theory and Practice, Springer-Verlag, Berlin, 2010
  • [16] Zhao H, Xu Z S, Ni M F, Liu S S, Generalized aggregation operators for intuitionistic fuzzy sets, International Journal of Intelligent Systems, (25) (2010) 1 - 30
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Muhammad Shakeel This is me

Saleem Abdullah This is me

Aliya Fahmi This is me

Publication Date February 27, 2018
Submission Date December 21, 2017
Published in Issue Year 2018 Issue: 21

Cite

APA Shakeel, M., Abdullah, S., & Fahmi, A. (2018). Generalized Cubic Aggregation Operators with Application in Decision Making Problem. Journal of New Theory(21), 1-30.
AMA Shakeel M, Abdullah S, Fahmi A. Generalized Cubic Aggregation Operators with Application in Decision Making Problem. JNT. February 2018;(21):1-30.
Chicago Shakeel, Muhammad, Saleem Abdullah, and Aliya Fahmi. “Generalized Cubic Aggregation Operators With Application in Decision Making Problem”. Journal of New Theory, no. 21 (February 2018): 1-30.
EndNote Shakeel M, Abdullah S, Fahmi A (February 1, 2018) Generalized Cubic Aggregation Operators with Application in Decision Making Problem. Journal of New Theory 21 1–30.
IEEE M. Shakeel, S. Abdullah, and A. Fahmi, “Generalized Cubic Aggregation Operators with Application in Decision Making Problem”, JNT, no. 21, pp. 1–30, February 2018.
ISNAD Shakeel, Muhammad et al. “Generalized Cubic Aggregation Operators With Application in Decision Making Problem”. Journal of New Theory 21 (February 2018), 1-30.
JAMA Shakeel M, Abdullah S, Fahmi A. Generalized Cubic Aggregation Operators with Application in Decision Making Problem. JNT. 2018;:1–30.
MLA Shakeel, Muhammad et al. “Generalized Cubic Aggregation Operators With Application in Decision Making Problem”. Journal of New Theory, no. 21, 2018, pp. 1-30.
Vancouver Shakeel M, Abdullah S, Fahmi A. Generalized Cubic Aggregation Operators with Application in Decision Making Problem. JNT. 2018(21):1-30.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).