Research Article
BibTex RIS Cite

On Topology of Fuzzy Strong b-Metric Spaces

Year 2018, Issue: 21, 59 - 67, 27.02.2018

Abstract

In this study, we introduce and investigate the concept of fuzzy strong b-metric space such that is a fuzzy analogy of strong b-metric spaces. By using the open balls, we define a topology on these spaces which is Hausdor® and first countable. Later we show that open balls are open and closed balls are closed. After defining the standard fuzzy strong b-metric space induced by a strong b-metric, we show that these spaces have same topology. We also note that every separable fuzzy strong b-metric space is second countable. Moreover, we give the uniform convergence theorem for these spaces.

References

  • [1] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994) 395-399.
  • [2] B. Schweizer, A. Sklar, Statistical metric spaces, Pasi¯c J. Maths. 10 (1960) 314-334.
  • [3] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces (Russian), Func An. Gos Ped Inst Unianowsk 30 (1989) 26-37.
  • [4] J. Heinonen, Lectures on analysis on metric spaces, Springer Science & Business Media, 2012.
  • [5] J. L. Kelley, General Topology, Springer Science & Business Media, 1975.
  • [6] L. A. Zadeh, Fuzzy sets, Inform. and Control. 8 (1965) 338-353.
  • [7] M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979) 205-230.
  • [8] M. A. Khamsi, N. Hussain,KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010) 3123-3129.
  • [9] O. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975) 326-334.
  • [10] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984) 215-229.
  • [11] P. Kumam, N.V. Dung, V.T.L. Hang, Some equivalences between cone b-metric spaces and b-metric spaces, Abstr. Appl.Anal. 2013 (2013) 1-8.
  • [12] R. Saadati, On the Topology of Fuzzy Metric Type Spaces, Filomat 29:1 (2015) 133-141.
  • [13] R. Fagin, L. Stockmeyer, Relaxing the triangle inequality in pattern matching, Int. J. Comput. Vis. 30(3) (1998) 219-231.
  • [14] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math Inform Univ Ostraviensis 1(1) (1993) 5-11.
  • [15] T. V. An, L. Q. Tuyen, N.V. Dung, Stone-type theorem on b-metric spaces and applications, Topology Appl. 185-186 (2015) 50-64.
  • [16] W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, 2014.
  • [17] Z. Deng, Fuzzy pseudo metric spaces, J. Math. Anal. Appl. 86 (1982) 74-95.
Year 2018, Issue: 21, 59 - 67, 27.02.2018

Abstract

References

  • [1] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994) 395-399.
  • [2] B. Schweizer, A. Sklar, Statistical metric spaces, Pasi¯c J. Maths. 10 (1960) 314-334.
  • [3] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces (Russian), Func An. Gos Ped Inst Unianowsk 30 (1989) 26-37.
  • [4] J. Heinonen, Lectures on analysis on metric spaces, Springer Science & Business Media, 2012.
  • [5] J. L. Kelley, General Topology, Springer Science & Business Media, 1975.
  • [6] L. A. Zadeh, Fuzzy sets, Inform. and Control. 8 (1965) 338-353.
  • [7] M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979) 205-230.
  • [8] M. A. Khamsi, N. Hussain,KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010) 3123-3129.
  • [9] O. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975) 326-334.
  • [10] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984) 215-229.
  • [11] P. Kumam, N.V. Dung, V.T.L. Hang, Some equivalences between cone b-metric spaces and b-metric spaces, Abstr. Appl.Anal. 2013 (2013) 1-8.
  • [12] R. Saadati, On the Topology of Fuzzy Metric Type Spaces, Filomat 29:1 (2015) 133-141.
  • [13] R. Fagin, L. Stockmeyer, Relaxing the triangle inequality in pattern matching, Int. J. Comput. Vis. 30(3) (1998) 219-231.
  • [14] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math Inform Univ Ostraviensis 1(1) (1993) 5-11.
  • [15] T. V. An, L. Q. Tuyen, N.V. Dung, Stone-type theorem on b-metric spaces and applications, Topology Appl. 185-186 (2015) 50-64.
  • [16] W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, 2014.
  • [17] Z. Deng, Fuzzy pseudo metric spaces, J. Math. Anal. Appl. 86 (1982) 74-95.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Tarkan Oner This is me

Publication Date February 27, 2018
Submission Date January 15, 2018
Published in Issue Year 2018 Issue: 21

Cite

APA Oner, T. (2018). On Topology of Fuzzy Strong b-Metric Spaces. Journal of New Theory(21), 59-67.
AMA Oner T. On Topology of Fuzzy Strong b-Metric Spaces. JNT. February 2018;(21):59-67.
Chicago Oner, Tarkan. “On Topology of Fuzzy Strong B-Metric Spaces”. Journal of New Theory, no. 21 (February 2018): 59-67.
EndNote Oner T (February 1, 2018) On Topology of Fuzzy Strong b-Metric Spaces. Journal of New Theory 21 59–67.
IEEE T. Oner, “On Topology of Fuzzy Strong b-Metric Spaces”, JNT, no. 21, pp. 59–67, February 2018.
ISNAD Oner, Tarkan. “On Topology of Fuzzy Strong B-Metric Spaces”. Journal of New Theory 21 (February 2018), 59-67.
JAMA Oner T. On Topology of Fuzzy Strong b-Metric Spaces. JNT. 2018;:59–67.
MLA Oner, Tarkan. “On Topology of Fuzzy Strong B-Metric Spaces”. Journal of New Theory, no. 21, 2018, pp. 59-67.
Vancouver Oner T. On Topology of Fuzzy Strong b-Metric Spaces. JNT. 2018(21):59-67.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).