Research Article
BibTex RIS Cite
Year 2018, Issue: 21, 68 - 77, 27.02.2018

Abstract

References

  • [1] M E. Abd El-Monsef, S.N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
  • [2] D. Andrijevic, Semi-preopen sets, Mat. Vesnik., 38(1) (1986), 24-32.
  • [3] S P. Arya and R. Gupta, On strongly continuous functions, Kyungpook Math. Jour. 14:131:143, 1974
  • [4] S. P. Arya and T.M. Nour, Chatcterizationsof s-normal spaces, Indian Jour. Pure Appl, Math 21(1990), 717-719
  • [5] S. S. Benchalli and R.S Wali, On rw-closed sets is topological spaces, Bull, Malays, Math, sci, soc30 (2007), 99-110
  • [6] S. S. Benchalli, P. G. Patil and T. D. Rayanagaudar, ωα-closed sets is topological spaces, The global. Jour. Appl. Math. and Math. Sci,. 2, 2009, 53-63.
  • [7] S. Bhattacharya, on generalized regular closed sets, Int Jour. Contemp. Math science Vol.6 ,201,145-152
  • [8] D. E. Cameron , Properties of s-closed spaces, prac Amer Math, soc 72(1978),581-586
  • [9] R. Devi, K. Balachandran and H. Maki, semi-generalized homeomorphisms and generalized semi homeomorphisms in Topological Spaces , Indian Jour,Closed Maps, J. Karnatk Univ. Sci., 27 (1982), 82-88.
  • [10] J. Dontchev, Contra continuous functions and strongly S-closed spaces, Int. Jour. Math. Sci, 19 (1996), 15-31.
  • [11] Y. Gnanambal, On generalized pre regular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3)(1997), 351-360.
  • [12] C. Janaki and Renu Thomas , on R*- Closed sets in Topological Spaces, Int. Jour. of Math Archive 3(8) 2012, 3067-3074
  • [13] O. N. Jastad, On some classes of nearly open sets, Pacific J. Math., 15(1965),961- 970
  • [14] A. Jayalakshmi & C.Janaki, on ωgrα-closed sets in Topological Spaces, Int J of maths 3(6) 2012, 2386-2392
  • [15] V. Joshi, S. Gupta, N. Bhardwaj, R. kumar, on Generalised pre Regular weakly(gprω)-closed set in sets in topological spaces, int. math foruro Vol(7)2012(40)1981-1992
  • [16] N. Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo,19(2) (1970), 89-96.
  • [17] N. Levine, Semi-open sets and semi-continuity in topological spaces, 70(1963), 36- 41.
  • [18] H. Maki, J. Umehara and T. Noiri, Every Topological space is pre T½ mem Fac sci, Kochi univ, Math ,17 1996,33-42
  • [19] H. Maki, P. Sundaram and K. Balachandran, On generalized homeomorphisms in topological spaces, Bull. Fukuoka Univ. Ed, part-III, 40(1991), 13-21
  • [20] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α- closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 15(1994), 51-63.
  • [21] A. S. Mashhour, M.E. Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
  • [22] S. Mishra, etc., On regular generalized weakly (rgw) closed sets in topological spaces, Int . Jour. of Math Analysis Vol 6, 2012 no.(30) , 1939-1952
  • [23] N. Nagaveni, Studies on generalizations of homeomorphisms in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
  • [24] A. Pushpalatha, Studies on generalizations of mapping in topological spaces, PhD Thesis, Bharathiar university, Coimbatore ,2000
  • [25] S. Sakthivel and N.Uma, On wgrα-homeomorphisms in Topological Spaces, Int. Jour. of Math. Trends and Tech. Vol5, Jan 2014 ,10-15
  • [26] T. Shlya Isac Mary and P.Thangavelv, on Regular pre-semi closed sets in topological spaces , KBM Jour. of Math Sc and comp Applications 2010(1), 9-17
  • [27] T. Shyla Isac Mary, P. Thangavelu, rps-homeomorphisms in topological spaces, Asian Jour. of Current Engg and Maths 2: 1 Jan –Feb (2013) 74 - 76.
  • [28] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 374-481.
  • [29] P. Sundaram and M. Sheik John, On ω-closed sets in topology, Acta Ciencia Indica 4 (2000), 389–39
  • [30] A.Vadivel and K. Vairamanickam, rgα-homeomorphisms in topological spaces, Int. Jour. of Math. Anal, Vol. 4, 2010, no. 18, 881 –890
  • [31] A.Vadivel and K. Vairamamanickam, rgα-Closed sets and rgα-open sets in topological spaces, Int. Jour. of math ,Anal Vol 3 , (2009)37,1803-1819
  • [32] M. K. R. S.Veera Kumar, g*-preclosed sets, Acts Ciencia indica, 28(1), 2002, 51-60.
  • [33] M. K. R. S. Veera kumar, On α-generalized regular closed sets, Indian Jour. of Math, 44(2) 2002 ,165-181
  • [34] R. S. Wali and Prabhavati S. Mandalgeri, On α regular ω-open sets in topological spaces, Jour. of comp & Math Sci., Vol 5(6), 2014, 490-499
  • [35] R. S. Wali and Prabhavati S. Mandalgeri, On αrω-continuous and αrω-Irresolute Maps in Topological Spaces, IOSR–JM, Volume 10, Issue 6 Ver. VI (2014), 14–24
  • [36] R. S. Wali and Prabhavati S. Mandalgeri, On αrω-closed and αrω-open maps in topological spaces, Int Journal of Applied Research 2015; 1(11), 511–518
  • [37] R. S. Wali and Prabhavati S Mandalgeri, On α regular ω-closed sets in Topological spaces, Int. J. of Math Archive 5(10), 2014, 68-76.
  • [38] B. Yasuf, On strongly α-continuous functions, far east Jour. Math. Sci 1(5), 2000

On αrω-Homeomorphisms in Topological Spaces

Year 2018, Issue: 21, 68 - 77, 27.02.2018

Abstract

A
bijection f:(X, τ)(Y, σ) is called
αrω-homeomorphism if f and f1 are
αrω-continuous. Also we introduce new class of maps, namely αrωc-homeomorphisms
which form a subclass of αrω-homeomorphisms. This class of maps is closed under
composition of maps. We prove that the set of all αrωc-homeomorphisms
forms a group under the operation composition of maps.

References

  • [1] M E. Abd El-Monsef, S.N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
  • [2] D. Andrijevic, Semi-preopen sets, Mat. Vesnik., 38(1) (1986), 24-32.
  • [3] S P. Arya and R. Gupta, On strongly continuous functions, Kyungpook Math. Jour. 14:131:143, 1974
  • [4] S. P. Arya and T.M. Nour, Chatcterizationsof s-normal spaces, Indian Jour. Pure Appl, Math 21(1990), 717-719
  • [5] S. S. Benchalli and R.S Wali, On rw-closed sets is topological spaces, Bull, Malays, Math, sci, soc30 (2007), 99-110
  • [6] S. S. Benchalli, P. G. Patil and T. D. Rayanagaudar, ωα-closed sets is topological spaces, The global. Jour. Appl. Math. and Math. Sci,. 2, 2009, 53-63.
  • [7] S. Bhattacharya, on generalized regular closed sets, Int Jour. Contemp. Math science Vol.6 ,201,145-152
  • [8] D. E. Cameron , Properties of s-closed spaces, prac Amer Math, soc 72(1978),581-586
  • [9] R. Devi, K. Balachandran and H. Maki, semi-generalized homeomorphisms and generalized semi homeomorphisms in Topological Spaces , Indian Jour,Closed Maps, J. Karnatk Univ. Sci., 27 (1982), 82-88.
  • [10] J. Dontchev, Contra continuous functions and strongly S-closed spaces, Int. Jour. Math. Sci, 19 (1996), 15-31.
  • [11] Y. Gnanambal, On generalized pre regular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3)(1997), 351-360.
  • [12] C. Janaki and Renu Thomas , on R*- Closed sets in Topological Spaces, Int. Jour. of Math Archive 3(8) 2012, 3067-3074
  • [13] O. N. Jastad, On some classes of nearly open sets, Pacific J. Math., 15(1965),961- 970
  • [14] A. Jayalakshmi & C.Janaki, on ωgrα-closed sets in Topological Spaces, Int J of maths 3(6) 2012, 2386-2392
  • [15] V. Joshi, S. Gupta, N. Bhardwaj, R. kumar, on Generalised pre Regular weakly(gprω)-closed set in sets in topological spaces, int. math foruro Vol(7)2012(40)1981-1992
  • [16] N. Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo,19(2) (1970), 89-96.
  • [17] N. Levine, Semi-open sets and semi-continuity in topological spaces, 70(1963), 36- 41.
  • [18] H. Maki, J. Umehara and T. Noiri, Every Topological space is pre T½ mem Fac sci, Kochi univ, Math ,17 1996,33-42
  • [19] H. Maki, P. Sundaram and K. Balachandran, On generalized homeomorphisms in topological spaces, Bull. Fukuoka Univ. Ed, part-III, 40(1991), 13-21
  • [20] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α- closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 15(1994), 51-63.
  • [21] A. S. Mashhour, M.E. Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
  • [22] S. Mishra, etc., On regular generalized weakly (rgw) closed sets in topological spaces, Int . Jour. of Math Analysis Vol 6, 2012 no.(30) , 1939-1952
  • [23] N. Nagaveni, Studies on generalizations of homeomorphisms in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
  • [24] A. Pushpalatha, Studies on generalizations of mapping in topological spaces, PhD Thesis, Bharathiar university, Coimbatore ,2000
  • [25] S. Sakthivel and N.Uma, On wgrα-homeomorphisms in Topological Spaces, Int. Jour. of Math. Trends and Tech. Vol5, Jan 2014 ,10-15
  • [26] T. Shlya Isac Mary and P.Thangavelv, on Regular pre-semi closed sets in topological spaces , KBM Jour. of Math Sc and comp Applications 2010(1), 9-17
  • [27] T. Shyla Isac Mary, P. Thangavelu, rps-homeomorphisms in topological spaces, Asian Jour. of Current Engg and Maths 2: 1 Jan –Feb (2013) 74 - 76.
  • [28] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 374-481.
  • [29] P. Sundaram and M. Sheik John, On ω-closed sets in topology, Acta Ciencia Indica 4 (2000), 389–39
  • [30] A.Vadivel and K. Vairamanickam, rgα-homeomorphisms in topological spaces, Int. Jour. of Math. Anal, Vol. 4, 2010, no. 18, 881 –890
  • [31] A.Vadivel and K. Vairamamanickam, rgα-Closed sets and rgα-open sets in topological spaces, Int. Jour. of math ,Anal Vol 3 , (2009)37,1803-1819
  • [32] M. K. R. S.Veera Kumar, g*-preclosed sets, Acts Ciencia indica, 28(1), 2002, 51-60.
  • [33] M. K. R. S. Veera kumar, On α-generalized regular closed sets, Indian Jour. of Math, 44(2) 2002 ,165-181
  • [34] R. S. Wali and Prabhavati S. Mandalgeri, On α regular ω-open sets in topological spaces, Jour. of comp & Math Sci., Vol 5(6), 2014, 490-499
  • [35] R. S. Wali and Prabhavati S. Mandalgeri, On αrω-continuous and αrω-Irresolute Maps in Topological Spaces, IOSR–JM, Volume 10, Issue 6 Ver. VI (2014), 14–24
  • [36] R. S. Wali and Prabhavati S. Mandalgeri, On αrω-closed and αrω-open maps in topological spaces, Int Journal of Applied Research 2015; 1(11), 511–518
  • [37] R. S. Wali and Prabhavati S Mandalgeri, On α regular ω-closed sets in Topological spaces, Int. J. of Math Archive 5(10), 2014, 68-76.
  • [38] B. Yasuf, On strongly α-continuous functions, far east Jour. Math. Sci 1(5), 2000
There are 38 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Prabhavati S. Prabhavati S. Mandalageri This is me

Revanasiddappa S. Wali This is me

Publication Date February 27, 2018
Submission Date January 29, 2018
Published in Issue Year 2018 Issue: 21

Cite

APA Prabhavati S. Mandalageri, P. . S., & Wali, R. S. (2018). On αrω-Homeomorphisms in Topological Spaces. Journal of New Theory(21), 68-77.
AMA Prabhavati S. Mandalageri PS, Wali RS. On αrω-Homeomorphisms in Topological Spaces. JNT. February 2018;(21):68-77.
Chicago Prabhavati S. Mandalageri, Prabhavati S., and Revanasiddappa S. Wali. “On αrω-Homeomorphisms in Topological Spaces”. Journal of New Theory, no. 21 (February 2018): 68-77.
EndNote Prabhavati S. Mandalageri PS, Wali RS (February 1, 2018) On αrω-Homeomorphisms in Topological Spaces. Journal of New Theory 21 68–77.
IEEE P. . S. Prabhavati S. Mandalageri and R. S. Wali, “On αrω-Homeomorphisms in Topological Spaces”, JNT, no. 21, pp. 68–77, February 2018.
ISNAD Prabhavati S. Mandalageri, Prabhavati S. - Wali, Revanasiddappa S. “On αrω-Homeomorphisms in Topological Spaces”. Journal of New Theory 21 (February 2018), 68-77.
JAMA Prabhavati S. Mandalageri PS, Wali RS. On αrω-Homeomorphisms in Topological Spaces. JNT. 2018;:68–77.
MLA Prabhavati S. Mandalageri, Prabhavati S. and Revanasiddappa S. Wali. “On αrω-Homeomorphisms in Topological Spaces”. Journal of New Theory, no. 21, 2018, pp. 68-77.
Vancouver Prabhavati S. Mandalageri PS, Wali RS. On αrω-Homeomorphisms in Topological Spaces. JNT. 2018(21):68-77.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).