Research Article
BibTex RIS Cite

A Geometric Solution to the Jacobian Problem

Year 2018, Issue: 24, 44 - 49, 14.08.2018

Abstract

In this article given a geometric solution to the well-known Jacobian problem. The twodimensional
polynomial Keller map is considered in four-dimensional Euclidean space R
4
. Used the concept
of parallel. A well-known example of Vitushkin is also considered. Earlier it was known that Vitushkin’s map
has a nonzero constant Jacobian and it is not injective. We will show that the Vitushkin map is not surjective
and moreover it has two inverse maps in the domain of its definition

References

  • [1]Newman D. T., One-one polynomial maps, Proc. Amer. Math. Soc., 11, 1960, 867–870.
  • [2]Bialynicki-Birula A., Rosenlicht V., Injective morphisms of real algebraic varieties, Proc.of the AMS., 13, 1962 , 200–203.
  • [3]Yagzhev A. V., On Keller’s problem, Siberian Math.J., 21, 1980, 747–754.
  • [4]Bass H., Connel E., Wright D., The Jacobian Conjecture: Reduction of Degree and Formal Expansion of the Inverse, Bulletin of the AMS, №7 (1982), 287–330.
  • [5]S. Cynk and K. Rusek, Injective endomorphisms of algebraic and analytic sets, Annales Polonici Mathematici, 56 № 1 (1991), 29–35 .
  • [6]Aro van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics, 2000, 77–79 .
Year 2018, Issue: 24, 44 - 49, 14.08.2018

Abstract

References

  • [1]Newman D. T., One-one polynomial maps, Proc. Amer. Math. Soc., 11, 1960, 867–870.
  • [2]Bialynicki-Birula A., Rosenlicht V., Injective morphisms of real algebraic varieties, Proc.of the AMS., 13, 1962 , 200–203.
  • [3]Yagzhev A. V., On Keller’s problem, Siberian Math.J., 21, 1980, 747–754.
  • [4]Bass H., Connel E., Wright D., The Jacobian Conjecture: Reduction of Degree and Formal Expansion of the Inverse, Bulletin of the AMS, №7 (1982), 287–330.
  • [5]S. Cynk and K. Rusek, Injective endomorphisms of algebraic and analytic sets, Annales Polonici Mathematici, 56 № 1 (1991), 29–35 .
  • [6]Aro van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics, 2000, 77–79 .
There are 6 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Kerimbayev Rashid Konyrbayevich This is me

Publication Date August 14, 2018
Submission Date February 19, 2018
Published in Issue Year 2018 Issue: 24

Cite

APA Konyrbayevich, K. R. (2018). A Geometric Solution to the Jacobian Problem. Journal of New Theory(24), 44-49.
AMA Konyrbayevich KR. A Geometric Solution to the Jacobian Problem. JNT. August 2018;(24):44-49.
Chicago Konyrbayevich, Kerimbayev Rashid. “A Geometric Solution to the Jacobian Problem”. Journal of New Theory, no. 24 (August 2018): 44-49.
EndNote Konyrbayevich KR (August 1, 2018) A Geometric Solution to the Jacobian Problem. Journal of New Theory 24 44–49.
IEEE K. R. Konyrbayevich, “A Geometric Solution to the Jacobian Problem”, JNT, no. 24, pp. 44–49, August 2018.
ISNAD Konyrbayevich, Kerimbayev Rashid. “A Geometric Solution to the Jacobian Problem”. Journal of New Theory 24 (August 2018), 44-49.
JAMA Konyrbayevich KR. A Geometric Solution to the Jacobian Problem. JNT. 2018;:44–49.
MLA Konyrbayevich, Kerimbayev Rashid. “A Geometric Solution to the Jacobian Problem”. Journal of New Theory, no. 24, 2018, pp. 44-49.
Vancouver Konyrbayevich KR. A Geometric Solution to the Jacobian Problem. JNT. 2018(24):44-9.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).