Research Article
BibTex RIS Cite

N-Fuzzy BI-Topological Space and Separation Axioms

Year 2018, Issue: 25, 8 - 15, 06.10.2018

Abstract

In this article, we introduced N-fuzzy bi-topological space by using the concepts
of fuzzy bi-topological space. We further define some basic properties of N-fuzzy bi-topological
spaces, secondly we study the concepts of natural separation axioms of bi-topological in N-fuzzy
bi-topological space which is pair wise separation Axioms mixed topology with the help of two
N-fuzzy topologies of a N-fuzzy bi-topological space. Relation between such pairwise separation
axioms and natural fuzzy separation axioms of the mixed fuzzy topological space are investigated. 

References

  • [1] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.
  • [2] N. Palaniappan, Fuzzy topology, Narosa Publications, (2002).
  • [3] C. L. Chang, Fuzzy topological spaces, J Math Anal Appl 24 (1968) 182-192.
  • [4] S. Ganguly and S. Saha, on separation axioms and separation of connected sets in Fuzzy topological space, Bull cal.Math Soc 79 (1987) 215-225.
  • [5] N. R. Das and P. C. Baishya, Fuzzy bi-topological space and separation Axioms, The Jour, Fuzzy Math 2 (1994) 3890-386.
  • [6] R. L. Srivastava and A. K. Srivastava, Fuzzy T1 topological spaces, J Math Anal. Appl 102 (1984) 442-448.
  • [7] A. K. Srivastava, M. Ali, Dewan, A note on K K Azad’s Fuzzy Hausdorffness conceptsn, Fuzzy sets and systems 42 (1991) 363-367.
  • [8] J. C. Kelley, Bi-topological Spaces, Inoc London Math. Soc 3 ( 1963) 781-89.
  • [9] J. Mahanta and P. K. Das, Results on Fuzzy soft topological space, Math. G.M March -3 (2012) PP1-11.
  • [10] T. J. Neog, D. K. Sut and G. C. Hazarika, Fuzzy soft topological Space, Int. J. Latest Trend Math Vol.2 No.1 March (2012).
  • [11] R. Srivastava, On separation axioms in a newly defined fuzzy topology, Fuzzy Sets and Systems, 62 (1994) 341-346.
  • [12] R. Srivastava, M. Srivastava, On pairwise Hausdorff fuzzy bitopological spaces5, J. of Fuzzy Math, 5 (1997) 553-564.
  • [13] R. Srivastava, M. Srivastava, On certain separation axioms in fuzzy bitopological spaces, Far East Journal of Math. Sciences, 27 (2007) 579-587.
  • [14] A. K. Srivastava, R. Srivastava, Sierpinski object in fuzzy topology, in: Proc. Int. Symp. on Modern Anal. and Appls. (Conf. Proc.), Prentice-Hall of India, (1985) 17- 25.
  • [15] R. Srivastava, S. N. Lal and A. K. Srivastava, On fuzzy T0 and R0 topological spaces, Journal of Mathematical Analysis and Applications, 136 (1988) 6673.
  • [16] R. Srivastava, S. N. Lal and A. K. Srivastava, Fuzzy Hausdorff topological spaces, Journal of Mathematical Analysis and Applications, 81 (1981) 497506.
  • [17] R. Lowen, Fuzzy topological spaces and fuzzy compactness, Journal of Mathematical Analysis and Applications, 56 (1976) 621633.
  • [18] S. Carlson, Fuzzy topological spaces, Part 1: Fuzzy sets and fuzzy topologies, Early ideas and obstacles, Rose-Hulman Institute of Technology.
  • [19] S. Willard, General Topology, Dover Publications, New York, 2004.
  • [20] B. C. Tripathy and A. Baruah, Lacunary statically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers. Kyungpook Mathematical Journal, 50(4),(2010) 565-574.
  • [21] B. C. Tripathy, A. Baruah, M. Et and M. Gungor, On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers. Iranian Journal of Science and Technology (Sciences), 36(2), (2012) 147-155.
  • [22] B. C. Tripathy and A. J. Dutta, Lacunary bounded variation sequence of fuzzy real numbers. Journal of Intelligent and Fuzzy Systems, 24(1), (2013) 185-189.
  • [23] B. C. Tripathy, J. D. Sarma, On weakly b-continuous functions in bitopological spaces. Acta Scientiarum. Technology, 35(3), (2013).
  • [24] B. C. Tripathy ans S. Acharjee, On (Y, d)-Bitopological semi-closed set via topological ideal. Proyecciones. Journal of Mathematics, 33(3), (2014) 245-257.
  • [25] B. C. Tripathy and S. Debnath, Y-open sets and Y-continuous mappings in fuzzy bitopological spaces. Journal of Intelligent and Fuzzy Systems, 24(3), (2013) 631-635.
Year 2018, Issue: 25, 8 - 15, 06.10.2018

Abstract

References

  • [1] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.
  • [2] N. Palaniappan, Fuzzy topology, Narosa Publications, (2002).
  • [3] C. L. Chang, Fuzzy topological spaces, J Math Anal Appl 24 (1968) 182-192.
  • [4] S. Ganguly and S. Saha, on separation axioms and separation of connected sets in Fuzzy topological space, Bull cal.Math Soc 79 (1987) 215-225.
  • [5] N. R. Das and P. C. Baishya, Fuzzy bi-topological space and separation Axioms, The Jour, Fuzzy Math 2 (1994) 3890-386.
  • [6] R. L. Srivastava and A. K. Srivastava, Fuzzy T1 topological spaces, J Math Anal. Appl 102 (1984) 442-448.
  • [7] A. K. Srivastava, M. Ali, Dewan, A note on K K Azad’s Fuzzy Hausdorffness conceptsn, Fuzzy sets and systems 42 (1991) 363-367.
  • [8] J. C. Kelley, Bi-topological Spaces, Inoc London Math. Soc 3 ( 1963) 781-89.
  • [9] J. Mahanta and P. K. Das, Results on Fuzzy soft topological space, Math. G.M March -3 (2012) PP1-11.
  • [10] T. J. Neog, D. K. Sut and G. C. Hazarika, Fuzzy soft topological Space, Int. J. Latest Trend Math Vol.2 No.1 March (2012).
  • [11] R. Srivastava, On separation axioms in a newly defined fuzzy topology, Fuzzy Sets and Systems, 62 (1994) 341-346.
  • [12] R. Srivastava, M. Srivastava, On pairwise Hausdorff fuzzy bitopological spaces5, J. of Fuzzy Math, 5 (1997) 553-564.
  • [13] R. Srivastava, M. Srivastava, On certain separation axioms in fuzzy bitopological spaces, Far East Journal of Math. Sciences, 27 (2007) 579-587.
  • [14] A. K. Srivastava, R. Srivastava, Sierpinski object in fuzzy topology, in: Proc. Int. Symp. on Modern Anal. and Appls. (Conf. Proc.), Prentice-Hall of India, (1985) 17- 25.
  • [15] R. Srivastava, S. N. Lal and A. K. Srivastava, On fuzzy T0 and R0 topological spaces, Journal of Mathematical Analysis and Applications, 136 (1988) 6673.
  • [16] R. Srivastava, S. N. Lal and A. K. Srivastava, Fuzzy Hausdorff topological spaces, Journal of Mathematical Analysis and Applications, 81 (1981) 497506.
  • [17] R. Lowen, Fuzzy topological spaces and fuzzy compactness, Journal of Mathematical Analysis and Applications, 56 (1976) 621633.
  • [18] S. Carlson, Fuzzy topological spaces, Part 1: Fuzzy sets and fuzzy topologies, Early ideas and obstacles, Rose-Hulman Institute of Technology.
  • [19] S. Willard, General Topology, Dover Publications, New York, 2004.
  • [20] B. C. Tripathy and A. Baruah, Lacunary statically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers. Kyungpook Mathematical Journal, 50(4),(2010) 565-574.
  • [21] B. C. Tripathy, A. Baruah, M. Et and M. Gungor, On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers. Iranian Journal of Science and Technology (Sciences), 36(2), (2012) 147-155.
  • [22] B. C. Tripathy and A. J. Dutta, Lacunary bounded variation sequence of fuzzy real numbers. Journal of Intelligent and Fuzzy Systems, 24(1), (2013) 185-189.
  • [23] B. C. Tripathy, J. D. Sarma, On weakly b-continuous functions in bitopological spaces. Acta Scientiarum. Technology, 35(3), (2013).
  • [24] B. C. Tripathy ans S. Acharjee, On (Y, d)-Bitopological semi-closed set via topological ideal. Proyecciones. Journal of Mathematics, 33(3), (2014) 245-257.
  • [25] B. C. Tripathy and S. Debnath, Y-open sets and Y-continuous mappings in fuzzy bitopological spaces. Journal of Intelligent and Fuzzy Systems, 24(3), (2013) 631-635.
There are 25 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Faisal Khan This is me

Saleem Abdullah This is me

Muhammad Rahim This is me

Muhammad Shahzad This is me

Publication Date October 6, 2018
Submission Date March 31, 2018
Published in Issue Year 2018 Issue: 25

Cite

APA Khan, F., Abdullah, S., Rahim, M., Shahzad, M. (2018). N-Fuzzy BI-Topological Space and Separation Axioms. Journal of New Theory(25), 8-15.
AMA Khan F, Abdullah S, Rahim M, Shahzad M. N-Fuzzy BI-Topological Space and Separation Axioms. JNT. October 2018;(25):8-15.
Chicago Khan, Faisal, Saleem Abdullah, Muhammad Rahim, and Muhammad Shahzad. “N-Fuzzy BI-Topological Space and Separation Axioms”. Journal of New Theory, no. 25 (October 2018): 8-15.
EndNote Khan F, Abdullah S, Rahim M, Shahzad M (October 1, 2018) N-Fuzzy BI-Topological Space and Separation Axioms. Journal of New Theory 25 8–15.
IEEE F. Khan, S. Abdullah, M. Rahim, and M. Shahzad, “N-Fuzzy BI-Topological Space and Separation Axioms”, JNT, no. 25, pp. 8–15, October 2018.
ISNAD Khan, Faisal et al. “N-Fuzzy BI-Topological Space and Separation Axioms”. Journal of New Theory 25 (October 2018), 8-15.
JAMA Khan F, Abdullah S, Rahim M, Shahzad M. N-Fuzzy BI-Topological Space and Separation Axioms. JNT. 2018;:8–15.
MLA Khan, Faisal et al. “N-Fuzzy BI-Topological Space and Separation Axioms”. Journal of New Theory, no. 25, 2018, pp. 8-15.
Vancouver Khan F, Abdullah S, Rahim M, Shahzad M. N-Fuzzy BI-Topological Space and Separation Axioms. JNT. 2018(25):8-15.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).