Research Article
BibTex RIS Cite
Year 2019, Issue: 26, 13 - 22, 01.01.2019

Abstract

References

  • [1] H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci., 177(2007), 2726-2735.
  • [2] M. I. Ali, F. Feng, X. Y. Liu, W. K. Min, and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57(2008), 2621-2628.
  • [3] M. Aslam and S. M. Qurashi, Some contributions to soft groups,Ann. Fuzzy Maths. Inform., 4(2012), 177-195.
  • [4] D. Chen, E. C. C. Tsang, D. S. Yeung and X. Wang, The parameterization reduction of soft sets and its applications, Comput. Math. Appl., 49(2005), 757-763.
  • [5] F. Hassani and R. Rasuli, Q-soft Subgroups and Anti-Q-soft Subgroups in Universal Algebra, The Journal of Fuzzy Mathematics Los Angeles 26 (1) (2018), 139-152.
  • [6] T. Hungerford, Algebra, Graduate Texts in Mathematics. Springer (2003).
  • [7] A. Kharal and B. Ahmad, Mappings on Soft Classes, New Mathematics and Natural Computation 7 (3) (2011).
  • [8] P. K. Maji, R. Biswas and A. R. Roy, Sof tset theory, Computer Mathematics with Applications, 45 (2003), 555-562.
  • [9] P. K. Maji, R. Biswas and A. R. Roy, An application of soft sets in a decision making problem, Computer Mathematics with Applications, 44 (2002), 1007-1083.
  • [10] D. A. Molodtsov, Soft set theory-First results, Computers and Mathematics with Applications 37 (4) (1999), 19-31.
  • [11] D. A. Molodtsov, The theory of soft sets (in Russian), URSS Publishers Moscow, 2004.
  • [12] R. Rasuli, Extension of Q-soft ideals in semigroups, Int. J. Open Problems Compt. Math., 10 (2) (2017), 6-13.
  • [13] R. Rasuli, Soft Lie Ideals and Anti Soft Lie Ideals, The Journal of Fuzzy Mathematics Los Angeles 26 (1) (2018),193-202.
  • [14] A. Solairaju and R. Nagarajan, A New structure and constructions of Q-fuzzy groups, Advances in fuzzy mathematics 4 (2009), 23-29.

Q-Soft Normal Subgroups

Year 2019, Issue: 26, 13 - 22, 01.01.2019

Abstract

This paper contains some definitions and results in Q-soft normal subgroup theory and cosets. Also some results are introduced  which have been used by homomorphism and anti-homomorphism of Q-soft normal subgroups. Next  we prove the analogue of the Lagrange's theorem.

References

  • [1] H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci., 177(2007), 2726-2735.
  • [2] M. I. Ali, F. Feng, X. Y. Liu, W. K. Min, and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57(2008), 2621-2628.
  • [3] M. Aslam and S. M. Qurashi, Some contributions to soft groups,Ann. Fuzzy Maths. Inform., 4(2012), 177-195.
  • [4] D. Chen, E. C. C. Tsang, D. S. Yeung and X. Wang, The parameterization reduction of soft sets and its applications, Comput. Math. Appl., 49(2005), 757-763.
  • [5] F. Hassani and R. Rasuli, Q-soft Subgroups and Anti-Q-soft Subgroups in Universal Algebra, The Journal of Fuzzy Mathematics Los Angeles 26 (1) (2018), 139-152.
  • [6] T. Hungerford, Algebra, Graduate Texts in Mathematics. Springer (2003).
  • [7] A. Kharal and B. Ahmad, Mappings on Soft Classes, New Mathematics and Natural Computation 7 (3) (2011).
  • [8] P. K. Maji, R. Biswas and A. R. Roy, Sof tset theory, Computer Mathematics with Applications, 45 (2003), 555-562.
  • [9] P. K. Maji, R. Biswas and A. R. Roy, An application of soft sets in a decision making problem, Computer Mathematics with Applications, 44 (2002), 1007-1083.
  • [10] D. A. Molodtsov, Soft set theory-First results, Computers and Mathematics with Applications 37 (4) (1999), 19-31.
  • [11] D. A. Molodtsov, The theory of soft sets (in Russian), URSS Publishers Moscow, 2004.
  • [12] R. Rasuli, Extension of Q-soft ideals in semigroups, Int. J. Open Problems Compt. Math., 10 (2) (2017), 6-13.
  • [13] R. Rasuli, Soft Lie Ideals and Anti Soft Lie Ideals, The Journal of Fuzzy Mathematics Los Angeles 26 (1) (2018),193-202.
  • [14] A. Solairaju and R. Nagarajan, A New structure and constructions of Q-fuzzy groups, Advances in fuzzy mathematics 4 (2009), 23-29.
There are 14 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Rasul Rasuli This is me

Publication Date January 1, 2019
Submission Date June 11, 2018
Published in Issue Year 2019 Issue: 26

Cite

APA Rasuli, R. (2019). Q-Soft Normal Subgroups. Journal of New Theory(26), 13-22.
AMA Rasuli R. Q-Soft Normal Subgroups. JNT. January 2019;(26):13-22.
Chicago Rasuli, Rasul. “Q-Soft Normal Subgroups”. Journal of New Theory, no. 26 (January 2019): 13-22.
EndNote Rasuli R (January 1, 2019) Q-Soft Normal Subgroups. Journal of New Theory 26 13–22.
IEEE R. Rasuli, “Q-Soft Normal Subgroups”, JNT, no. 26, pp. 13–22, January 2019.
ISNAD Rasuli, Rasul. “Q-Soft Normal Subgroups”. Journal of New Theory 26 (January 2019), 13-22.
JAMA Rasuli R. Q-Soft Normal Subgroups. JNT. 2019;:13–22.
MLA Rasuli, Rasul. “Q-Soft Normal Subgroups”. Journal of New Theory, no. 26, 2019, pp. 13-22.
Vancouver Rasuli R. Q-Soft Normal Subgroups. JNT. 2019(26):13-22.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).