Research Article
BibTex RIS Cite

Integral Transforms for the New Generalized Beta Function

Year 2019, Issue: 28, 53 - 61, 07.05.2019

Abstract

In this paper, some representation formulas for the generalized Gamma and Beta functions are obtained. Also, certain integral transforms for the generalized Beta function associated with the Wright hypergeometric function are derived.

References

  • A. A. Al-Gonah, W.K. Mohammed, A new extension of extended Gamma and Beta functions and their properties, Journal of Scientific and Engineering Research, 5 (9) (2018), 257-270
  • T.R. Prabhakar, A singular integral equation with a Generalized Mittag-Leffler Function in the Kernel}, Yokohama Mathematical Journal, 19 (1971), 7-15.
  • E. Özergin, Some properties of hypergeometric functions}, PhD dissertation, Eastern Mediterranean University (2011), North Cyprus, Turkey.
  • M. A. Chaudhry, A. Qadir, M. Rafique, S. M. Zubair, Extension of Euler's Beta Function, Journal of Computational and Applied Mathematics, 78 (1997), 19-32.
  • M. A. Chaudhry, S. M. Zubair, \emph{Generalized incomplete gamma functions with applications}, Journal of Computational and Applied Mathematics, 55 (1994), 99-124.
  • M. S. Shadab, S. J. Jabee, J. C. Choi, An extended Beta function and its applications, Far East Journal of Mathematical Sciences, 103 (2018), 235-251.
  • P. I. Pucheta, A new extended beta function, International Journal of Mathematics And its Applications, 5 (3-c) (2017), 255-260.
  • P. Agarwal, Certain properties of the generalized Gauss hypergeometric functions, Applied Mathematics and Information Sciences, 8 (5) (2014), 2315-2320.
  • H. M. Srivastava, H. L. Manocha, A treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
  • A. M. Mathai, R.K. Saxena, H.J. Haubold, The H-Function Theory and Applications, Springer-Verlag New York, 2010.
  • A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, Journal of Mathematical Analysis and Applications, 336 (2007), 797-811.
  • I. N. Sneddon, The Use of Integral Transforms, Tata McGraw-Hill, New Delhi, India, 1979.
  • A. Dixit, V. H. Moll, The integrals in Gradshteyn and Ryzhik. Part 28: The confluent hypergeometric function and Whittaker functions, Series A: Mathematical Sciences, 26 (2015), 49-61.
Year 2019, Issue: 28, 53 - 61, 07.05.2019

Abstract

References

  • A. A. Al-Gonah, W.K. Mohammed, A new extension of extended Gamma and Beta functions and their properties, Journal of Scientific and Engineering Research, 5 (9) (2018), 257-270
  • T.R. Prabhakar, A singular integral equation with a Generalized Mittag-Leffler Function in the Kernel}, Yokohama Mathematical Journal, 19 (1971), 7-15.
  • E. Özergin, Some properties of hypergeometric functions}, PhD dissertation, Eastern Mediterranean University (2011), North Cyprus, Turkey.
  • M. A. Chaudhry, A. Qadir, M. Rafique, S. M. Zubair, Extension of Euler's Beta Function, Journal of Computational and Applied Mathematics, 78 (1997), 19-32.
  • M. A. Chaudhry, S. M. Zubair, \emph{Generalized incomplete gamma functions with applications}, Journal of Computational and Applied Mathematics, 55 (1994), 99-124.
  • M. S. Shadab, S. J. Jabee, J. C. Choi, An extended Beta function and its applications, Far East Journal of Mathematical Sciences, 103 (2018), 235-251.
  • P. I. Pucheta, A new extended beta function, International Journal of Mathematics And its Applications, 5 (3-c) (2017), 255-260.
  • P. Agarwal, Certain properties of the generalized Gauss hypergeometric functions, Applied Mathematics and Information Sciences, 8 (5) (2014), 2315-2320.
  • H. M. Srivastava, H. L. Manocha, A treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
  • A. M. Mathai, R.K. Saxena, H.J. Haubold, The H-Function Theory and Applications, Springer-Verlag New York, 2010.
  • A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, Journal of Mathematical Analysis and Applications, 336 (2007), 797-811.
  • I. N. Sneddon, The Use of Integral Transforms, Tata McGraw-Hill, New Delhi, India, 1979.
  • A. Dixit, V. H. Moll, The integrals in Gradshteyn and Ryzhik. Part 28: The confluent hypergeometric function and Whittaker functions, Series A: Mathematical Sciences, 26 (2015), 49-61.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Ahmed Ali Al-gonah This is me

Waleed Khadher Mohammed This is me

Publication Date May 7, 2019
Submission Date October 8, 2018
Published in Issue Year 2019 Issue: 28

Cite

APA Al-gonah, A. A., & Mohammed, W. K. (2019). Integral Transforms for the New Generalized Beta Function. Journal of New Theory(28), 53-61.
AMA Al-gonah AA, Mohammed WK. Integral Transforms for the New Generalized Beta Function. JNT. May 2019;(28):53-61.
Chicago Al-gonah, Ahmed Ali, and Waleed Khadher Mohammed. “Integral Transforms for the New Generalized Beta Function”. Journal of New Theory, no. 28 (May 2019): 53-61.
EndNote Al-gonah AA, Mohammed WK (May 1, 2019) Integral Transforms for the New Generalized Beta Function. Journal of New Theory 28 53–61.
IEEE A. A. Al-gonah and W. K. Mohammed, “Integral Transforms for the New Generalized Beta Function”, JNT, no. 28, pp. 53–61, May 2019.
ISNAD Al-gonah, Ahmed Ali - Mohammed, Waleed Khadher. “Integral Transforms for the New Generalized Beta Function”. Journal of New Theory 28 (May 2019), 53-61.
JAMA Al-gonah AA, Mohammed WK. Integral Transforms for the New Generalized Beta Function. JNT. 2019;:53–61.
MLA Al-gonah, Ahmed Ali and Waleed Khadher Mohammed. “Integral Transforms for the New Generalized Beta Function”. Journal of New Theory, no. 28, 2019, pp. 53-61.
Vancouver Al-gonah AA, Mohammed WK. Integral Transforms for the New Generalized Beta Function. JNT. 2019(28):53-61.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).