Year 2019, Volume , Issue 29, Pages 32 - 41 2019-12-30

A Note on Rhotrices Ring

Ummahan Merdinaz ACAR [1] , Betül COŞGUN [2] , Emre ÇİFTLİKLİ [3]


In this paper, we define algebraic operations on 3-dimensional rhotrices over an arbitrary ring R and show that the set of 3-dimensional rhotrices over an arbitrary ring R is a ring according to these operations. We investigate the properties of a rhotrices ring. Furthermore, we characterize the ideals of a rhotrices ring. Also, maximal ideals and prime ideals of a rhotrices ring are investigated. An example of these concepts is presented.

Rhotrix, rhotrices ring, ideals of a rhotrices ring
  • K. T. Atanassov, A. G. Shannon, Matrix-tertions and Matrix-noitrets: Exercises in Mathematical Enrichment, International Journal of Mathematical Education in Science and Technology 29 (1998) 898-903.
  • A. O. Ajibade, The Concept of Rhotrix in Mathematical Enrichment, International Journal of Mathematical Education in Science and Technology 34 (2003) 175-179.
  • A. Mohammed, A Remark on The Classifications of Rhotrices as Abstract Structures, International Journal of Physical Sciences 4 (2009) 496-499.
  • B. Sani, An Alternative Method for Multiplication of Rhotrices, International Journal of Mathematical Education in Science and Technology 35 (2004) 777-781.
  • A. Mohammed, M. Balarabe, First Review of Articles on Rhotrix Theory Since Its Inception, Advances in Linear Algebra and Matrix Theory 4 (2014) 216-224.
  • A. Mohammed, The Non-Commutative Full Rhotrix Ring and Its Subring, Science World Journal 13 (2018) 24-36.
  • G. Abrams, P. Ara, M. S. Molina, The Leavitt Path Algebra of a Graph, Lecture Notes in Mathematics 2191, Springer, 2017.
Primary Language en
Subjects Mathematics
Journal Section Research Article
Authors

Author: Ummahan Merdinaz ACAR (Primary Author)
Institution: MUGLA SITKI KOCMAN UNIVERSITY
Country: Turkey


Author: Betül COŞGUN
Institution: Muğla Sıtkı Koçman University
Country: Turkey


Author: Emre ÇİFTLİKLİ
Institution: MIMAR SINAN FINE ARTS UNIVERSITY
Country: Turkey


Supporting Institution Muğla Sıtkı Koçman University
Project Number 17-223
Dates

Publication Date : December 30, 2019

Bibtex @research article { jnt546482, journal = {Journal of New Theory}, issn = {2149-1402}, eissn = {2149-1402}, address = {Mathematics Department, Gaziosmanpasa University 60250 Tokat-TURKEY.}, publisher = {Gaziosmanpasa University}, year = {2019}, volume = {}, pages = {32 - 41}, doi = {}, title = {A Note on Rhotrices Ring}, key = {cite}, author = {ACAR, Ummahan Merdinaz and COŞGUN, Betül and ÇİFTLİKLİ, Emre} }
APA ACAR, U , COŞGUN, B , ÇİFTLİKLİ, E . (2019). A Note on Rhotrices Ring. Journal of New Theory , (29) , 32-41 . Retrieved from https://dergipark.org.tr/en/pub/jnt/issue/51172/546482
MLA ACAR, U , COŞGUN, B , ÇİFTLİKLİ, E . "A Note on Rhotrices Ring". Journal of New Theory (2019 ): 32-41 <https://dergipark.org.tr/en/pub/jnt/issue/51172/546482>
Chicago ACAR, U , COŞGUN, B , ÇİFTLİKLİ, E . "A Note on Rhotrices Ring". Journal of New Theory (2019 ): 32-41
RIS TY - JOUR T1 - A Note on Rhotrices Ring AU - Ummahan Merdinaz ACAR , Betül COŞGUN , Emre ÇİFTLİKLİ Y1 - 2019 PY - 2019 N1 - DO - T2 - Journal of New Theory JF - Journal JO - JOR SP - 32 EP - 41 VL - IS - 29 SN - 2149-1402-2149-1402 M3 - UR - Y2 - 2019 ER -
EndNote %0 Journal of New Theory A Note on Rhotrices Ring %A Ummahan Merdinaz ACAR , Betül COŞGUN , Emre ÇİFTLİKLİ %T A Note on Rhotrices Ring %D 2019 %J Journal of New Theory %P 2149-1402-2149-1402 %V %N 29 %R %U
ISNAD ACAR, Ummahan Merdinaz , COŞGUN, Betül , ÇİFTLİKLİ, Emre . "A Note on Rhotrices Ring". Journal of New Theory / 29 (December 2020): 32-41 .
AMA ACAR U , COŞGUN B , ÇİFTLİKLİ E . A Note on Rhotrices Ring. JNT. 2019; (29): 32-41.
Vancouver ACAR U , COŞGUN B , ÇİFTLİKLİ E . A Note on Rhotrices Ring. Journal of New Theory. 2019; (29): 41-32.