Research Article
BibTex RIS Cite
Year 2020, Issue: 30, 1 - 7, 26.03.2020

Abstract

References

  • D. Cardenas-Morales, P. Garrancho, I. Raşa, Bernstein-type Operators which Preserve Polynomials , Computers and Mathematics with Applications 62 (2011) 158-163.
  • T. Acar, A. Aral, I. Raşa, Modi ed Bernstein-Durrmeyer Operators, General Mathematics 22(1) (2014) 27-41.
  • T. Acar, A. Aral, I. Rasa, Positive Linear Operators Preserving  and  2, Constructive Mathe- matical Analysis 2(3) (2019) 98-102.
  • T. Acar, G. Ulusoy, Approximation by Modi ed Szasz Durrmeyer Operators, Periodica Mathe- matica Hungarica 72 (2016) 64-75.
  • T. Acar, V. Gupta, A. Aral, Rate of Convergence for Generalized Szasz Operators, Bulletin of Mathematical Science 1(1) (2011) 99-113.
  • A. Aral, D. Inoan, I. Raşa, On the Generalized Szasz-Mirakyan Operators, Results in Mathematics 65 (2014) 441-452.
  • M. Bodur, O. G. Yilmaz, A. Aral, Approximation by Baskakov-Szasz-Stancu Operators Preserving Exponential Functions, Constructive Mathematical Analysis 1(1) (2018) 1-8.
  • Z. Finta, A Quantitative Variant of Voronovskaja's Theorem for King-Type Operators, Construc- tive Mathematical Analysis 2(3) (2019) 124-129.
  • R. Maurya, H. Sharma, C. Gupta, Approximation Properties of Kantorovich Type Modi cations of (p, q)-Meyer-Konig-Zeller Operators, Constructive Mathematical Analysis 1(1) (2018) 58-72.
  • G. Ulusoy Ada, On the Generalized Baskakov Durrmeyer Operators, Sakarya University Journal of Science 23(4) (2019) 549-553.
  • Z. Finta, On Converse Approximation Theorems, Journal of Mathematical Analysis and Appli- cations 312(1) (2005) 159-180.
  • A. Holhos, Quantitative Estimates for Positive Linear Operators in Weighted Space, General Mathematics 16(4) (2008) 99-110.
  • A. Ciupa, A Class of Integral Favard Szasz Type Operators, Studia Universitatis Babes-Bolyai Mathematica 40(1) (1995) 39-47.
  • A. D. Gadziev, The Convergence Problem for a Sequence of Positive Linear Operators on Unbounded Sets and Theorems Analogues to that of P. P. Korovkin, Doklady Akademii Nauk SSSR 218 (1974) 1001-1004, Also in Soviet Mathematics Doklady 15 (1974) 1433-1436.

Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators

Year 2020, Issue: 30, 1 - 7, 26.03.2020

Abstract

In this paper, we define a new genuine Baskakov-Durrmeyer operators.
We give uniform convergence using the weighted modulus of continuity. Then we
study direct approximation of the operators in terms of the moduli of smoothness.
After that a Voronovskaya type result is studied.

References

  • D. Cardenas-Morales, P. Garrancho, I. Raşa, Bernstein-type Operators which Preserve Polynomials , Computers and Mathematics with Applications 62 (2011) 158-163.
  • T. Acar, A. Aral, I. Raşa, Modi ed Bernstein-Durrmeyer Operators, General Mathematics 22(1) (2014) 27-41.
  • T. Acar, A. Aral, I. Rasa, Positive Linear Operators Preserving  and  2, Constructive Mathe- matical Analysis 2(3) (2019) 98-102.
  • T. Acar, G. Ulusoy, Approximation by Modi ed Szasz Durrmeyer Operators, Periodica Mathe- matica Hungarica 72 (2016) 64-75.
  • T. Acar, V. Gupta, A. Aral, Rate of Convergence for Generalized Szasz Operators, Bulletin of Mathematical Science 1(1) (2011) 99-113.
  • A. Aral, D. Inoan, I. Raşa, On the Generalized Szasz-Mirakyan Operators, Results in Mathematics 65 (2014) 441-452.
  • M. Bodur, O. G. Yilmaz, A. Aral, Approximation by Baskakov-Szasz-Stancu Operators Preserving Exponential Functions, Constructive Mathematical Analysis 1(1) (2018) 1-8.
  • Z. Finta, A Quantitative Variant of Voronovskaja's Theorem for King-Type Operators, Construc- tive Mathematical Analysis 2(3) (2019) 124-129.
  • R. Maurya, H. Sharma, C. Gupta, Approximation Properties of Kantorovich Type Modi cations of (p, q)-Meyer-Konig-Zeller Operators, Constructive Mathematical Analysis 1(1) (2018) 58-72.
  • G. Ulusoy Ada, On the Generalized Baskakov Durrmeyer Operators, Sakarya University Journal of Science 23(4) (2019) 549-553.
  • Z. Finta, On Converse Approximation Theorems, Journal of Mathematical Analysis and Appli- cations 312(1) (2005) 159-180.
  • A. Holhos, Quantitative Estimates for Positive Linear Operators in Weighted Space, General Mathematics 16(4) (2008) 99-110.
  • A. Ciupa, A Class of Integral Favard Szasz Type Operators, Studia Universitatis Babes-Bolyai Mathematica 40(1) (1995) 39-47.
  • A. D. Gadziev, The Convergence Problem for a Sequence of Positive Linear Operators on Unbounded Sets and Theorems Analogues to that of P. P. Korovkin, Doklady Akademii Nauk SSSR 218 (1974) 1001-1004, Also in Soviet Mathematics Doklady 15 (1974) 1433-1436.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Gülsüm Ulusoy Ada 0000-0003-2755-2334

Publication Date March 26, 2020
Submission Date December 27, 2019
Published in Issue Year 2020 Issue: 30

Cite

APA Ulusoy Ada, G. (2020). Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators. Journal of New Theory(30), 1-7.
AMA Ulusoy Ada G. Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators. JNT. March 2020;(30):1-7.
Chicago Ulusoy Ada, Gülsüm. “Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators”. Journal of New Theory, no. 30 (March 2020): 1-7.
EndNote Ulusoy Ada G (March 1, 2020) Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators. Journal of New Theory 30 1–7.
IEEE G. Ulusoy Ada, “Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators”, JNT, no. 30, pp. 1–7, March 2020.
ISNAD Ulusoy Ada, Gülsüm. “Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators”. Journal of New Theory 30 (March 2020), 1-7.
JAMA Ulusoy Ada G. Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators. JNT. 2020;:1–7.
MLA Ulusoy Ada, Gülsüm. “Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators”. Journal of New Theory, no. 30, 2020, pp. 1-7.
Vancouver Ulusoy Ada G. Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators. JNT. 2020(30):1-7.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).