Year 2020, Volume , Issue 30, Pages 1 - 7 2020-03-26

Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators

Gülsüm ULUSOY ADA [1]


In this paper, we define a new genuine Baskakov-Durrmeyer operators. We give uniform convergence using the weighted modulus of continuity. Then we study direct approximation of the operators in terms of the moduli of smoothness. After that a Voronovskaya type result is studied.
Genuine Baskakov Durrmeyer operators, weighted modulus of continuity, Voronovskaya theorem
  • D. Cardenas-Morales, P. Garrancho, I. Raşa, Bernstein-type Operators which Preserve Polynomials , Computers and Mathematics with Applications 62 (2011) 158-163.
  • T. Acar, A. Aral, I. Raşa, Modi ed Bernstein-Durrmeyer Operators, General Mathematics 22(1) (2014) 27-41.
  • T. Acar, A. Aral, I. Rasa, Positive Linear Operators Preserving  and  2, Constructive Mathe- matical Analysis 2(3) (2019) 98-102.
  • T. Acar, G. Ulusoy, Approximation by Modi ed Szasz Durrmeyer Operators, Periodica Mathe- matica Hungarica 72 (2016) 64-75.
  • T. Acar, V. Gupta, A. Aral, Rate of Convergence for Generalized Szasz Operators, Bulletin of Mathematical Science 1(1) (2011) 99-113.
  • A. Aral, D. Inoan, I. Raşa, On the Generalized Szasz-Mirakyan Operators, Results in Mathematics 65 (2014) 441-452.
  • M. Bodur, O. G. Yilmaz, A. Aral, Approximation by Baskakov-Szasz-Stancu Operators Preserving Exponential Functions, Constructive Mathematical Analysis 1(1) (2018) 1-8.
  • Z. Finta, A Quantitative Variant of Voronovskaja's Theorem for King-Type Operators, Construc- tive Mathematical Analysis 2(3) (2019) 124-129.
  • R. Maurya, H. Sharma, C. Gupta, Approximation Properties of Kantorovich Type Modi cations of (p, q)-Meyer-Konig-Zeller Operators, Constructive Mathematical Analysis 1(1) (2018) 58-72.
  • G. Ulusoy Ada, On the Generalized Baskakov Durrmeyer Operators, Sakarya University Journal of Science 23(4) (2019) 549-553.
  • Z. Finta, On Converse Approximation Theorems, Journal of Mathematical Analysis and Appli- cations 312(1) (2005) 159-180.
  • A. Holhos, Quantitative Estimates for Positive Linear Operators in Weighted Space, General Mathematics 16(4) (2008) 99-110.
  • A. Ciupa, A Class of Integral Favard Szasz Type Operators, Studia Universitatis Babes-Bolyai Mathematica 40(1) (1995) 39-47.
  • A. D. Gadziev, The Convergence Problem for a Sequence of Positive Linear Operators on Unbounded Sets and Theorems Analogues to that of P. P. Korovkin, Doklady Akademii Nauk SSSR 218 (1974) 1001-1004, Also in Soviet Mathematics Doklady 15 (1974) 1433-1436.
Primary Language en
Subjects Mathematics
Published Date Mart
Journal Section Research Article
Authors

Orcid: 0000-0003-2755-2334
Author: Gülsüm ULUSOY ADA (Primary Author)
Institution: Çankırı Karatekin Üniversitesi Fen Fakültesi
Country: Turkey


Dates

Publication Date : March 26, 2020

Bibtex @research article { jnt666026, journal = {Journal of New Theory}, issn = {2149-1402}, eissn = {2149-1402}, address = {Mathematics Department, Gaziosmanpasa University 60250 Tokat-TURKEY.}, publisher = {Gaziosmanpasa University}, year = {2020}, volume = {}, pages = {1 - 7}, doi = {}, title = {Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators}, key = {cite}, author = {ULUSOY ADA, Gülsüm} }
APA ULUSOY ADA, G . (2020). Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators. Journal of New Theory , (30) , 1-7 . Retrieved from https://dergipark.org.tr/en/pub/jnt/issue/53260/666026
MLA ULUSOY ADA, G . "Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators". Journal of New Theory (2020 ): 1-7 <https://dergipark.org.tr/en/pub/jnt/issue/53260/666026>
Chicago ULUSOY ADA, G . "Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators". Journal of New Theory (2020 ): 1-7
RIS TY - JOUR T1 - Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators AU - Gülsüm ULUSOY ADA Y1 - 2020 PY - 2020 N1 - DO - T2 - Journal of New Theory JF - Journal JO - JOR SP - 1 EP - 7 VL - IS - 30 SN - 2149-1402-2149-1402 M3 - UR - Y2 - 2020 ER -
EndNote %0 Journal of New Theory Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators %A Gülsüm ULUSOY ADA %T Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators %D 2020 %J Journal of New Theory %P 2149-1402-2149-1402 %V %N 30 %R %U
ISNAD ULUSOY ADA, Gülsüm . "Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators". Journal of New Theory / 30 (March 2020): 1-7 .
AMA ULUSOY ADA G . Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators. JNT. 2020; (30): 1-7.
Vancouver ULUSOY ADA G . Better Approximation of Functions by Genuine Baskakov Durrmeyer Operators. Journal of New Theory. 2020; (30): 7-1.