Research Article
BibTex RIS Cite

Some Results on Divisior Cordial Graphs

Year 2020, Issue: 30, 57 - 63, 26.03.2020

Abstract

In this paper, we introduce some results on divisor cordial graphs where we find some upper bound for the labeling of any simple graph and r-regular  graph and describe the divisor cordial labeling for some families of graphs such the jellyfish graph, shell graph and the bow and butterfly graphs.

References

  • F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.
  • J. A. Gallian, A dynamic survey of graph labeling, Electronic J comb. 21 (2018) \#Ds6.
  • I. Cahit, Cordial graph :A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987) 201-207.
  • R. Varatharajan, S. Navanaeethakrishnan, and K. Nagarajan, Divisor cordial graphs, Internat. J. Math. Combin. 4 (2011) 15-25.
  • P. L. R. Raj and R. Valli, Some New Families of Divisor Cordial Graphs, Internat. J. Math. Trends Tech. 7(2) (2014) 94-102.
  • P. Maya and T. Nicholas, Some New Families of Divisor Cordial Graph, Annals Pure Appl. Math. 5(2)(2014) 125-134.
  • A. Muthaiyan and P. Pugalenthi, Some new divisor cordial graphs, Int. J. Math. Trends and Tech., 12(2) (2014) 81-88.
  • A. Nellai Murugan and V. Brinda Devi, A study on path related divisor cordial graphs, International Journal of Scientific Research. 3(4) (2014) 286-291.
  • A. Nellai Murugan and M. Taj Nisha, A study on divisor cordial labelling of star attached paths and cycles, Indian Journal of Research. 3(3) (2014) 12-17.
  • S. K. Vaidya and N. H. Shah, Some Star and Bistar Related Divisor Cordial Graphs, Annals Pure Appl. Math. 3(1) (2013) 67-77.
  • S. K. Vaidya and N. H. Shah, Further Results on Divisor Cordial Labeling, Annals Pure Appl. Math. 4(2) (2013) 150-159.
  • R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, Special classes of divisor cordial graphs, Int. Math. Forum 7(35) (2012) 1737-1749.
  • D. M. Burton, Elementary Number Theory, 7th Edition, McGraw Hill, 2007; ISBN0-0706-305188-8.
  • K. Manimekalai and K. Thirusangu, Pair Sum Labeling of some Special Graphs , International Journal of Computer Applications. 69(8) (2013) 34-38.
  • P. Deb and N. B. Limaya, On harmonious labelling of some cycle related graphs, Ars Combin. 65 (2002) 177-197.
  • J. Jeba Jesintha and K. Ezhilarasi Hilda, Butterfly graphs with shell orders m and 2m+1 are graceful, Bonfring Internat. J. Research Communication Engin. 2(2) (2012) 01-05.
Year 2020, Issue: 30, 57 - 63, 26.03.2020

Abstract

References

  • F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.
  • J. A. Gallian, A dynamic survey of graph labeling, Electronic J comb. 21 (2018) \#Ds6.
  • I. Cahit, Cordial graph :A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987) 201-207.
  • R. Varatharajan, S. Navanaeethakrishnan, and K. Nagarajan, Divisor cordial graphs, Internat. J. Math. Combin. 4 (2011) 15-25.
  • P. L. R. Raj and R. Valli, Some New Families of Divisor Cordial Graphs, Internat. J. Math. Trends Tech. 7(2) (2014) 94-102.
  • P. Maya and T. Nicholas, Some New Families of Divisor Cordial Graph, Annals Pure Appl. Math. 5(2)(2014) 125-134.
  • A. Muthaiyan and P. Pugalenthi, Some new divisor cordial graphs, Int. J. Math. Trends and Tech., 12(2) (2014) 81-88.
  • A. Nellai Murugan and V. Brinda Devi, A study on path related divisor cordial graphs, International Journal of Scientific Research. 3(4) (2014) 286-291.
  • A. Nellai Murugan and M. Taj Nisha, A study on divisor cordial labelling of star attached paths and cycles, Indian Journal of Research. 3(3) (2014) 12-17.
  • S. K. Vaidya and N. H. Shah, Some Star and Bistar Related Divisor Cordial Graphs, Annals Pure Appl. Math. 3(1) (2013) 67-77.
  • S. K. Vaidya and N. H. Shah, Further Results on Divisor Cordial Labeling, Annals Pure Appl. Math. 4(2) (2013) 150-159.
  • R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, Special classes of divisor cordial graphs, Int. Math. Forum 7(35) (2012) 1737-1749.
  • D. M. Burton, Elementary Number Theory, 7th Edition, McGraw Hill, 2007; ISBN0-0706-305188-8.
  • K. Manimekalai and K. Thirusangu, Pair Sum Labeling of some Special Graphs , International Journal of Computer Applications. 69(8) (2013) 34-38.
  • P. Deb and N. B. Limaya, On harmonious labelling of some cycle related graphs, Ars Combin. 65 (2002) 177-197.
  • J. Jeba Jesintha and K. Ezhilarasi Hilda, Butterfly graphs with shell orders m and 2m+1 are graceful, Bonfring Internat. J. Research Communication Engin. 2(2) (2012) 01-05.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Mohammed Seoud This is me

Shakir Salman This is me

Publication Date March 26, 2020
Submission Date September 2, 2019
Published in Issue Year 2020 Issue: 30

Cite

APA Seoud, M., & Salman, S. (2020). Some Results on Divisior Cordial Graphs. Journal of New Theory(30), 57-63.
AMA Seoud M, Salman S. Some Results on Divisior Cordial Graphs. JNT. March 2020;(30):57-63.
Chicago Seoud, Mohammed, and Shakir Salman. “Some Results on Divisior Cordial Graphs”. Journal of New Theory, no. 30 (March 2020): 57-63.
EndNote Seoud M, Salman S (March 1, 2020) Some Results on Divisior Cordial Graphs. Journal of New Theory 30 57–63.
IEEE M. Seoud and S. Salman, “Some Results on Divisior Cordial Graphs”, JNT, no. 30, pp. 57–63, March 2020.
ISNAD Seoud, Mohammed - Salman, Shakir. “Some Results on Divisior Cordial Graphs”. Journal of New Theory 30 (March 2020), 57-63.
JAMA Seoud M, Salman S. Some Results on Divisior Cordial Graphs. JNT. 2020;:57–63.
MLA Seoud, Mohammed and Shakir Salman. “Some Results on Divisior Cordial Graphs”. Journal of New Theory, no. 30, 2020, pp. 57-63.
Vancouver Seoud M, Salman S. Some Results on Divisior Cordial Graphs. JNT. 2020(30):57-63.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).