Research Article
BibTex RIS Cite
Year 2020, Issue: 30, 79 - 85, 26.03.2020

Abstract

References

  • J. Tong, A Decomposition of Continuity, Acta Mathematica Hungarica 48 (1986) 11-15.
  • J. Tong, A Decomposition of Continuity in Topological Spaces, Acta Mathematica Hungarica 54(1-2) (1989) 51*55.
  • M. Ganster, I. L. Reilly, A Decomposition of Continuity, Acta Mathematica Hungarica 56 (1990) 299-301.
  • T. Noiri, O. R. Sayed, On Decomposition of Continuity, Acta Mathematica Hungarica 111(1-2) (2006) 1-8.
  • M. K. R. S. Veera Kumar, \mup-Closed Sets in Topological Spaces, Antarctica Journal of Mathe- matics 2(1) (2005) 31-52.
  • S. Ganesan, Remarks on \mu\alpha-Closed Sets in Topological Spaces (Submitted).
  • M. Stone, Application of The Theory of Boolean Rings to General Topology, Transactions of the American Mathematical Society 41 (1937) 374-481.
  • O. Njastad, On Some Classes of Nearly Open Sets, Paci c Journal of Mathematics 15 (1965) 961-970.
  • N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, The American Mathemat- ical Monthly 70(1963) 36-41.
  • A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On Precontinuous and Weak Pre Con- tinuous Mappings, Proceedings of the Mathematical and Physical Society of Egypt 53 (1982) 47-53.
  • S. G. Crossley, S. K. Hildebrand, Semi-Closure,Texas Journal of Science 22 (1971) 99-112.
  • T. Noiri, H. Maki, J. Umehara, Generalized Preclosed Functions, Memoirs of the Faculty of Science, Kochi University. Series A Mathematics 19 (1998) 13-20.
  • E. Hatir, T. Noiri, S. Yuksel, A Decomposition of Continuity, Acta Mathematica Hungarica 70 (1996) 145-150.
  • I. L. Reilly, M. R. Vamanamurthy, On \alpha-Continuity in Topological Spaces, Acta Mathematica Hungarica 45 (1985) 27-32.
  • B. Al-Nashef, A Decomposition of \alpha-Continuity and Semicontinuity, Acta Mathematica Hungar- ica 97(1-2) (2002) 115-120.
  • M. Ganster, I. L. Reilly, Locally Closed Sets and LC-Continuous Functions, International Journal of Mathematics and Mathematical Sciences 12 (1989) 417-424.
  • H. Maki, R. Devi, K. Balachandran, Generalized \alpha-Closed Sets in Topology, Bulletin of Fukuoka University of Education. Part III. 42 (1993) 13-21.
  • M. K. R. S. Veera Kumari, Between Closed Sets and g-Closed Sets, Memoirs of the Faculty of Science, Kochi University. Series A Mathematics 21 (2000) 1-19.
  • T. Noiri, M. Rajamani, P. Sundaram, A Decomposition of a Weaker Form of Continuity, Acta Mathematica Hungarica 93(1-2) (2001) 109-114.
  • A. S. Mashhour, I. A. Hasanein, S. N. El-Deeb, \alpha-Continuous and \alpha-Open Mappings, Acta Mathematica Hungarica 41 (1983) 213-218.

A Decomposition of \alpha-continuity and \mu\alpha-continuity

Year 2020, Issue: 30, 79 - 85, 26.03.2020

Abstract

The main purpose of this paper is to introduce the concepts of *\eta-
sets, **\eta-sets, *\eta-continuity and **\eta-continuity and to obtain decomposition of \alpha-
continuity and \mu\alpha-continuity in topological spaces.

References

  • J. Tong, A Decomposition of Continuity, Acta Mathematica Hungarica 48 (1986) 11-15.
  • J. Tong, A Decomposition of Continuity in Topological Spaces, Acta Mathematica Hungarica 54(1-2) (1989) 51*55.
  • M. Ganster, I. L. Reilly, A Decomposition of Continuity, Acta Mathematica Hungarica 56 (1990) 299-301.
  • T. Noiri, O. R. Sayed, On Decomposition of Continuity, Acta Mathematica Hungarica 111(1-2) (2006) 1-8.
  • M. K. R. S. Veera Kumar, \mup-Closed Sets in Topological Spaces, Antarctica Journal of Mathe- matics 2(1) (2005) 31-52.
  • S. Ganesan, Remarks on \mu\alpha-Closed Sets in Topological Spaces (Submitted).
  • M. Stone, Application of The Theory of Boolean Rings to General Topology, Transactions of the American Mathematical Society 41 (1937) 374-481.
  • O. Njastad, On Some Classes of Nearly Open Sets, Paci c Journal of Mathematics 15 (1965) 961-970.
  • N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, The American Mathemat- ical Monthly 70(1963) 36-41.
  • A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On Precontinuous and Weak Pre Con- tinuous Mappings, Proceedings of the Mathematical and Physical Society of Egypt 53 (1982) 47-53.
  • S. G. Crossley, S. K. Hildebrand, Semi-Closure,Texas Journal of Science 22 (1971) 99-112.
  • T. Noiri, H. Maki, J. Umehara, Generalized Preclosed Functions, Memoirs of the Faculty of Science, Kochi University. Series A Mathematics 19 (1998) 13-20.
  • E. Hatir, T. Noiri, S. Yuksel, A Decomposition of Continuity, Acta Mathematica Hungarica 70 (1996) 145-150.
  • I. L. Reilly, M. R. Vamanamurthy, On \alpha-Continuity in Topological Spaces, Acta Mathematica Hungarica 45 (1985) 27-32.
  • B. Al-Nashef, A Decomposition of \alpha-Continuity and Semicontinuity, Acta Mathematica Hungar- ica 97(1-2) (2002) 115-120.
  • M. Ganster, I. L. Reilly, Locally Closed Sets and LC-Continuous Functions, International Journal of Mathematics and Mathematical Sciences 12 (1989) 417-424.
  • H. Maki, R. Devi, K. Balachandran, Generalized \alpha-Closed Sets in Topology, Bulletin of Fukuoka University of Education. Part III. 42 (1993) 13-21.
  • M. K. R. S. Veera Kumari, Between Closed Sets and g-Closed Sets, Memoirs of the Faculty of Science, Kochi University. Series A Mathematics 21 (2000) 1-19.
  • T. Noiri, M. Rajamani, P. Sundaram, A Decomposition of a Weaker Form of Continuity, Acta Mathematica Hungarica 93(1-2) (2001) 109-114.
  • A. S. Mashhour, I. A. Hasanein, S. N. El-Deeb, \alpha-Continuous and \alpha-Open Mappings, Acta Mathematica Hungarica 41 (1983) 213-218.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Selvaraj Ganesan This is me

Publication Date March 26, 2020
Submission Date December 23, 2018
Published in Issue Year 2020 Issue: 30

Cite

APA Ganesan, S. (2020). A Decomposition of \alpha-continuity and \mu\alpha-continuity. Journal of New Theory(30), 79-85.
AMA Ganesan S. A Decomposition of \alpha-continuity and \mu\alpha-continuity. JNT. March 2020;(30):79-85.
Chicago Ganesan, Selvaraj. “A Decomposition of \alpha-Continuity and \mu\alpha-Continuity”. Journal of New Theory, no. 30 (March 2020): 79-85.
EndNote Ganesan S (March 1, 2020) A Decomposition of \alpha-continuity and \mu\alpha-continuity. Journal of New Theory 30 79–85.
IEEE S. Ganesan, “A Decomposition of \alpha-continuity and \mu\alpha-continuity”, JNT, no. 30, pp. 79–85, March 2020.
ISNAD Ganesan, Selvaraj. “A Decomposition of \alpha-Continuity and \mu\alpha-Continuity”. Journal of New Theory 30 (March 2020), 79-85.
JAMA Ganesan S. A Decomposition of \alpha-continuity and \mu\alpha-continuity. JNT. 2020;:79–85.
MLA Ganesan, Selvaraj. “A Decomposition of \alpha-Continuity and \mu\alpha-Continuity”. Journal of New Theory, no. 30, 2020, pp. 79-85.
Vancouver Ganesan S. A Decomposition of \alpha-continuity and \mu\alpha-continuity. JNT. 2020(30):79-85.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).