Research Article
BibTex RIS Cite
Year 2020, Issue: 31, 20 - 31, 30.06.2020

Abstract

References

  • A. Aral, V. Gupta, On q-Baskakov Type Operators, Demonstratio Mathematica 1(42) (2009) 109-122.
  • T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientic Book Publ. Cluj-Napoca, 2005.
  • S. S. Miller, P. T. Mocanu, Subordinates of Differential Superordinations, Complex Variables 48(10) (2003) 815-826.
  • Y. Polatoglu, M. Bolcal, A. Sen, E. Yavuz, A Study on The Generalization of Janowski Functions in The Unit Disc, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 22 (2006) 27-31.
  • W. Janowski, Some Extremal Problems for Certain Families of Analytic Functions, Annales Polonici Mathematici 28 (1973) 297-326.
  • N. Khan, B. Khan, Q. Z. Ahmad, S. Ahmad, Some Convolution Properties of Multivalent Analytic Functions, AIMS Mathematics 2(2) (2017) 260-268.
  • S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan, I. Ali, Upper Bound of The Third Hankel Determinant for a Subclass of q-Starlike Functions, Symmetry 11 (2019) Article ID 347 1-13.
  • S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A Certain Subclass of Meromorphically q-Starlike Functions Associated with The Janowski Functions, Journal of Inequalities and Applications 2019 (2019) Article ID 88 1-11.
  • K. I. Noor, N. Khan, M. Darus, Q. Z. Ahmad, B. Khan, Some Properties of Analytic Functions Associated with Conic Type Regions, International Journal of Analysis and Applications 16(5) (2018) 689-701.
  • K. I. Noor, N. Khan, K. Piejko, Alpha Convex Functions Associated with Conic Domain, Inter- national Journal of Analysis and Applications 11(2) (2016) 70-80.
  • K. I. Noor, N. Khan, Some Variations of Janowski Functions Associated with m-Symmetric Points, Journal of New Theory 11 (2016) 16-28.
  • K. I. Noor, N. Khan, Q. Z. Ahmad, N. Khan, Y. L. Chung, On Certain Subclass of Analytic Functions, Armenian Journal of Mathematics 10(11) (2018) 1-15.
  • H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz Determinants for A Subclass of q-Starlike Functions Associated with A General Conic Domain, Mathematics 7 (2019) Article ID 181 1-15.
  • H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some General Classes of q-Starlike Functions Associated with The Janowski Functions, Symmetry 11 (2019) Article ID 292 1-14.
  • M. Sabil, Q. Z. Ahmad, B. Khan, M. Tahir, N. Khan, Generalisation of Certain Subclasses of Analytic and bi-univalent Functions, Maejo International Journal of Science and Technology 13(01) (2019) 1-9.
  • J. Dziok, Meromorphic Functions with Bounded Boundary Rotation, Acta Mathematica Scientia 34(2) (2014) 466-472.
  • B. Pinchuk, Functions of Bounded Boundary Rotation, Israel Journal of Mathematics 10 (1971) 6-16.
  • H. M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Aca- demic Publishers, Dordrecht, The Netherlands 2001.
  • H. M. Srivastava, A. A. Attiya, An Integral Operator Associated with The Hurwitz-Lerch Zeta Function and Differential Subordination, Integral Transforms and Special Functions 18 (2007) 207-216.
  • J. L. Liu, Subordinations for Certain Multivalent Analytic Functions Associated with The Gener- alized Srivastava-Attiya Operator, Integral Transforms and Special Functions 19 (2008) 893-901.
  • S. D. Lin, H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Applied Mathematics and Computation 154 (2004) 725-733.
  • D. Raducanu, H. M Srivastava, A New Class of Analytic Functions De ned by means of A Con- volution Operator Involving The Hurwitz-Lerch Zeta Function, Integral Transforms and Special Functions 18 (2007) 933-943.
  • J. W. Alexander, Functions Which Map The Interior of The Unit Circle upon Simple Regions, Annals of Mathematics Second Series 17(1) (1915) 12-22.
  • S. D. Bernardi, Convex and Starlike Univalent Functions, Transactions of the American Mathe- matical Society 135 (1969) 429-446.
  • K. I. Noor, K. Yousaf, On Classes of Analytic Functions Related with Generalized Janowski Functions, World Applied Sciences Journal 13 (2011) 40-47.
  • K. I. Noor, M. Arif, Mapping Properties of An Integral Operator, Applied Mathematics Letters 25 (2012) 1826-1829.
  • V. Paatero, Uber Die Konforme Abbildung Von Gebieten, Deren Rander Vonbeschrankter Drehung Sind, Annales Academiae Scientiarum Fennicae: Series A. 33(9) (1931) page 77.
  • K. S. Padmanabhan, R. Parvatham, Properties of A Class of Functions with Bounded Boundary Rotation, Annales Polonici Mathematici 31 (1975) 311-323.
  • W. Rogosinski, On The Coefficients of Subordinate Functions, Proceedings of the London Math- ematical Society 48(2) (1943) 48-82.
  • S. Ruscheweyh, T. Shiel-small, Hadamard Product of Schlicht Functions and Polya-Schoenberg Conjecture, Commentarii Mathematici Helvetici 48 (1973) 119-135.
  • K. I. Noor, S. N. Malik, M. Arif, M. Raza, On Bounded Boundary and Bounded Radius Rotation Related with Janowski Function, World Applied Sciences Journal 12 (6) (2011) 895-902.
  • A. W. Goodman, Univalent Functions, Vol. I & II, polygonal Publishing House, Washington, New Jersey, 1983.
  • K. I. Noor, Higher-Order Close-to-Convex Functions, Math. Japonica 37(1) (1992) 1-8.
  • R. J. Libera, Some Classes of Regular Univalent Functions, Proceedings of the American Math- ematical Society 16 (1965) 755-758.
  • A. E. Livingston, On The Radius Of Univalence Of Certain Analytic Functions, Proceedings of the American Mathematical Society 17 (1996) 352-357.
  • H. Silverman, E. M. Silvia, Subclasses of Starlike Functions Subordinate to Convex Functions, Canadian Journal of Mathematics 1 (1985) 48-61.
  • H. Silverman, E. M. Silvia, D. Telage, Convolution Conditions for Convexity, Starlikeness and Spiral-Likeness, Mathematische Zeitschrift 162 (1978) 125-130.
  • S. Hussain, M. Arif, S. N. Malik, Higher Order Close-to-Convex Functions Associated with Attiya- Srivastava Operator, Bulletin of the Iranian Mathematical Society 40(4) (2014) 911-920.

Some Variations of Janowski Functions Associated with Srivastava-Attiya Operator

Year 2020, Issue: 31, 20 - 31, 30.06.2020

Abstract

In this paper, we consider some new subclasses of analytic functions
with bounded boundary and bounded radius rotation associated with Attia-Srivastava
operator. The coefficient bounds, integral representations, convolution properties
belong to theses classes are investigated.                                                                                                                 

                                                                                                                                                               

References

  • A. Aral, V. Gupta, On q-Baskakov Type Operators, Demonstratio Mathematica 1(42) (2009) 109-122.
  • T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientic Book Publ. Cluj-Napoca, 2005.
  • S. S. Miller, P. T. Mocanu, Subordinates of Differential Superordinations, Complex Variables 48(10) (2003) 815-826.
  • Y. Polatoglu, M. Bolcal, A. Sen, E. Yavuz, A Study on The Generalization of Janowski Functions in The Unit Disc, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 22 (2006) 27-31.
  • W. Janowski, Some Extremal Problems for Certain Families of Analytic Functions, Annales Polonici Mathematici 28 (1973) 297-326.
  • N. Khan, B. Khan, Q. Z. Ahmad, S. Ahmad, Some Convolution Properties of Multivalent Analytic Functions, AIMS Mathematics 2(2) (2017) 260-268.
  • S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan, I. Ali, Upper Bound of The Third Hankel Determinant for a Subclass of q-Starlike Functions, Symmetry 11 (2019) Article ID 347 1-13.
  • S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A Certain Subclass of Meromorphically q-Starlike Functions Associated with The Janowski Functions, Journal of Inequalities and Applications 2019 (2019) Article ID 88 1-11.
  • K. I. Noor, N. Khan, M. Darus, Q. Z. Ahmad, B. Khan, Some Properties of Analytic Functions Associated with Conic Type Regions, International Journal of Analysis and Applications 16(5) (2018) 689-701.
  • K. I. Noor, N. Khan, K. Piejko, Alpha Convex Functions Associated with Conic Domain, Inter- national Journal of Analysis and Applications 11(2) (2016) 70-80.
  • K. I. Noor, N. Khan, Some Variations of Janowski Functions Associated with m-Symmetric Points, Journal of New Theory 11 (2016) 16-28.
  • K. I. Noor, N. Khan, Q. Z. Ahmad, N. Khan, Y. L. Chung, On Certain Subclass of Analytic Functions, Armenian Journal of Mathematics 10(11) (2018) 1-15.
  • H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz Determinants for A Subclass of q-Starlike Functions Associated with A General Conic Domain, Mathematics 7 (2019) Article ID 181 1-15.
  • H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some General Classes of q-Starlike Functions Associated with The Janowski Functions, Symmetry 11 (2019) Article ID 292 1-14.
  • M. Sabil, Q. Z. Ahmad, B. Khan, M. Tahir, N. Khan, Generalisation of Certain Subclasses of Analytic and bi-univalent Functions, Maejo International Journal of Science and Technology 13(01) (2019) 1-9.
  • J. Dziok, Meromorphic Functions with Bounded Boundary Rotation, Acta Mathematica Scientia 34(2) (2014) 466-472.
  • B. Pinchuk, Functions of Bounded Boundary Rotation, Israel Journal of Mathematics 10 (1971) 6-16.
  • H. M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Aca- demic Publishers, Dordrecht, The Netherlands 2001.
  • H. M. Srivastava, A. A. Attiya, An Integral Operator Associated with The Hurwitz-Lerch Zeta Function and Differential Subordination, Integral Transforms and Special Functions 18 (2007) 207-216.
  • J. L. Liu, Subordinations for Certain Multivalent Analytic Functions Associated with The Gener- alized Srivastava-Attiya Operator, Integral Transforms and Special Functions 19 (2008) 893-901.
  • S. D. Lin, H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Applied Mathematics and Computation 154 (2004) 725-733.
  • D. Raducanu, H. M Srivastava, A New Class of Analytic Functions De ned by means of A Con- volution Operator Involving The Hurwitz-Lerch Zeta Function, Integral Transforms and Special Functions 18 (2007) 933-943.
  • J. W. Alexander, Functions Which Map The Interior of The Unit Circle upon Simple Regions, Annals of Mathematics Second Series 17(1) (1915) 12-22.
  • S. D. Bernardi, Convex and Starlike Univalent Functions, Transactions of the American Mathe- matical Society 135 (1969) 429-446.
  • K. I. Noor, K. Yousaf, On Classes of Analytic Functions Related with Generalized Janowski Functions, World Applied Sciences Journal 13 (2011) 40-47.
  • K. I. Noor, M. Arif, Mapping Properties of An Integral Operator, Applied Mathematics Letters 25 (2012) 1826-1829.
  • V. Paatero, Uber Die Konforme Abbildung Von Gebieten, Deren Rander Vonbeschrankter Drehung Sind, Annales Academiae Scientiarum Fennicae: Series A. 33(9) (1931) page 77.
  • K. S. Padmanabhan, R. Parvatham, Properties of A Class of Functions with Bounded Boundary Rotation, Annales Polonici Mathematici 31 (1975) 311-323.
  • W. Rogosinski, On The Coefficients of Subordinate Functions, Proceedings of the London Math- ematical Society 48(2) (1943) 48-82.
  • S. Ruscheweyh, T. Shiel-small, Hadamard Product of Schlicht Functions and Polya-Schoenberg Conjecture, Commentarii Mathematici Helvetici 48 (1973) 119-135.
  • K. I. Noor, S. N. Malik, M. Arif, M. Raza, On Bounded Boundary and Bounded Radius Rotation Related with Janowski Function, World Applied Sciences Journal 12 (6) (2011) 895-902.
  • A. W. Goodman, Univalent Functions, Vol. I & II, polygonal Publishing House, Washington, New Jersey, 1983.
  • K. I. Noor, Higher-Order Close-to-Convex Functions, Math. Japonica 37(1) (1992) 1-8.
  • R. J. Libera, Some Classes of Regular Univalent Functions, Proceedings of the American Math- ematical Society 16 (1965) 755-758.
  • A. E. Livingston, On The Radius Of Univalence Of Certain Analytic Functions, Proceedings of the American Mathematical Society 17 (1996) 352-357.
  • H. Silverman, E. M. Silvia, Subclasses of Starlike Functions Subordinate to Convex Functions, Canadian Journal of Mathematics 1 (1985) 48-61.
  • H. Silverman, E. M. Silvia, D. Telage, Convolution Conditions for Convexity, Starlikeness and Spiral-Likeness, Mathematische Zeitschrift 162 (1978) 125-130.
  • S. Hussain, M. Arif, S. N. Malik, Higher Order Close-to-Convex Functions Associated with Attiya- Srivastava Operator, Bulletin of the Iranian Mathematical Society 40(4) (2014) 911-920.
There are 38 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Nasir Khan This is me

Bakhtiar Ahmad This is me

Bilal Khan This is me

Muhammad Nisar This is me

Publication Date June 30, 2020
Submission Date September 5, 2020
Published in Issue Year 2020 Issue: 31

Cite

APA Khan, N., Ahmad, B., Khan, B., Nisar, M. (2020). Some Variations of Janowski Functions Associated with Srivastava-Attiya Operator. Journal of New Theory(31), 20-31.
AMA Khan N, Ahmad B, Khan B, Nisar M. Some Variations of Janowski Functions Associated with Srivastava-Attiya Operator. JNT. June 2020;(31):20-31.
Chicago Khan, Nasir, Bakhtiar Ahmad, Bilal Khan, and Muhammad Nisar. “Some Variations of Janowski Functions Associated With Srivastava-Attiya Operator”. Journal of New Theory, no. 31 (June 2020): 20-31.
EndNote Khan N, Ahmad B, Khan B, Nisar M (June 1, 2020) Some Variations of Janowski Functions Associated with Srivastava-Attiya Operator. Journal of New Theory 31 20–31.
IEEE N. Khan, B. Ahmad, B. Khan, and M. Nisar, “Some Variations of Janowski Functions Associated with Srivastava-Attiya Operator”, JNT, no. 31, pp. 20–31, June 2020.
ISNAD Khan, Nasir et al. “Some Variations of Janowski Functions Associated With Srivastava-Attiya Operator”. Journal of New Theory 31 (June 2020), 20-31.
JAMA Khan N, Ahmad B, Khan B, Nisar M. Some Variations of Janowski Functions Associated with Srivastava-Attiya Operator. JNT. 2020;:20–31.
MLA Khan, Nasir et al. “Some Variations of Janowski Functions Associated With Srivastava-Attiya Operator”. Journal of New Theory, no. 31, 2020, pp. 20-31.
Vancouver Khan N, Ahmad B, Khan B, Nisar M. Some Variations of Janowski Functions Associated with Srivastava-Attiya Operator. JNT. 2020(31):20-31.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).